FANG Yuan, WANG Huaqiao, YANG Xin, et al. Research progress of carbon fiber-based composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica.
Citation: FANG Yuan, WANG Huaqiao, YANG Xin, et al. Research progress of carbon fiber-based composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica.

Research progress of carbon fiber-based composite microwave absorbing materials

More Information
  • Received Date: December 08, 2024
  • Revised Date: January 21, 2025
  • Accepted Date: February 06, 2025
  • Available Online: March 24, 2025
  • With the rapid development of advanced technologies, electromagnetic waves are increasingly applied in both civilian and military fields, giving rise to urgent problems with interference and leakage of electromagnetic waves. As a key solution, electromagnetic wave absorbing materials have received widespread attention. Carbon fibres (CFs) are favored due to their lightness, low cost, excellent electrical properties, and chemical stability. However, a single CF cannot meet comprehensive absorption requirements, necessitating the introduction of various loss mechanisms and reasonable microstructure designs to adjust electromagnetic parameters, optimize impedance matching, and enhance the attenuation capabilities of electromagnetic waves. This paper focuses on reviewing research progress in modifying CFs with metals, metal compounds, carbon materials, conductive polymers, and other multi-component hybrid materials at home and abroad, analyzing the influence of structural and compositional changes on absorption performance. Additionally, it summarizes the major challenges faced by current lightweight carbon fiber-based composite absorbing materials and outlooks their development prospects.

  • Objectives 

    With the advancement of modern technology and the widespread use of electromagnetic waves, there has been an increasing demand for electromagnetic radiation protection and stealth technologies, particularly in military, aerospace, and communications fields. Traditional absorbing materials face challenges such as high density, unstable absorption performance, and poor environmental adaptability. Carbon fiber-based composite absorbing materials, known for their high strength, low density, good electrical conductivity, and excellent mechanical properties, have gained significant attention. This paper aims to summarize recent advancements in carbon fiber-based composite absorbing materials, analyze the latest achievements in component optimization, structural design, and absorption performance, and discuss future development directions for these materials.

    Methods 

    The research on carbon fiber-based composite materials involves using carbon fibers or uniquely structured one-dimensional biomass materials as matrices, and incorporating various types of absorbing fillers (such as metals, metal compounds, carbon materials, conductive polymers, etc.) into the carbon fiber matrix. By designing the type, content, and distribution of the fillers, the electromagnetic properties of the composites are adjusted. At the same time, microstructural design strategies (such as core-shell, hollow, porous, and other irregular morphologies) are employed to further enhance the wave-absorbing performance of the composites.

    Results 

    According to the latest research on carbon fiber-based wave-absorbing composites, their excellent absorption performance is mainly attributed to the following mechanisms: (1) Joule heating induced by the electrical conductivity of the carbon fiber matrix; (2) Magnetic loss introduced by eddy current loss, natural resonance, and exchange resonance of magnetic components; (3) The presence of defects (e.g., vacancies, dislocations, grain boundaries) alters charge density distribution, enhancing conductivity and dipole polarization; (4) Heterogeneous interfaces formed by multi-component doping facilitate interfacial polarization; (5) A three-dimensional conductive network improves conductive loss; (6) Pore structures (e.g., hollow, porous) induce interfacial polarization through surface charge accumulation and rearrangement; (7) Additionally, specialized microstructures provide more reflection sites for electromagnetic waves, optimizing propagation paths.This article classifies carbon fiber-based composite microwave absorbing materials into five categories based on the type of modified material; (1) Metal materials and CF composites: Metal powders and alloys, through eddy current loss and resonance, provide high magnetic permeability and loss, improving impedance matching and diversifying the loss mechanisms. However, metal materials lack stability, so stable materials (e.g., ceramics) need to be introduced to ensure long-lasting absorption performance. (2) Metal compounds and CF composites: Most metal carbides and sulfides possess excellent corrosion resistance, oxidation resistance, and dielectric properties. When combined with CF, they enhance dielectric loss and environmental adaptability. Some compounds (e.g., ferrites) offer both magnetic and dielectric losses, significantly enhancing the composite’s microwave absorption. (3) Carbon materials and CF composites: Carbon materials like carbon nanotubes and graphene, known for lightness, conductivity, and stability, can enhance electromagnetic wave absorption when combined with CF. However, a special structural design is needed to improve impedance mismatch. The loss mechanism is singular, requiring doping with other magnetic materials.(4) Conductive polymers and CF composites: Like carbon materials, conductive polymers increase conductivity but may lead to electromagnetic wave reflection and impedance mismatch. Component optimization and microstructure design are necessary to address these issues.(5) Composites of materials with different loss mechanisms: These materials, integrating polarization relaxation, conductive loss, and magnetic loss, allow multiple loss mechanisms in the composite, achieving efficient absorption while meeting the lightweight requirement. Based on the five optimization approaches for the components mentioned above, combined with microstructure design strategies, the goal is to optimize the electromagnetic wave propagation path, further enhance the absorption performance, and broaden the absorption bandwidth. Conclusions: Although the wave-absorbing performance of carbon fiber-based composite materials has significantly improved, challenges remain in practical applications. These challenges mainly include the comprehensive properties of the absorbing materials, such as absorption efficiency, bandwidth, and stability, as well as the cost of large-scale production. Future research should further explore the design of novel composite materials, optimize fabrication processes, enhance material multifunctionality, and achieve higher absorption efficiency. Additionally, employing advanced characterization techniques to gain deeper insights into the electromagnetic wave absorption mechanisms will facilitate the development of next-generation carbon fiber composites.

  • [1]
    KIM S H, LEE S Y, ZHANG Y, et al. Carbon-based radar absorbing materials toward stealth technologies[J]. Advanced Science, 2023, 10(32): 2303104. DOI: 10.1002/advs.202303104
    [2]
    XIONG X H, ZHANG H B, LV H L, et al. Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption[J]. Carbon, 2024, 219: 118834. DOI: 10.1016/j.carbon.2024.118834
    [3]
    王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12.

    WANG Yifan, ZHU Lin, HAN Lu, et al. Research status and development trend of electromagnetic absorbing materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12(in Chinese).
    [4]
    BI Y X, MA M L, LIU Y Y, et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework[J]. Journal of Colloid and Interface Science, 2021, 600: 209-218. DOI: 10.1016/j.jcis.2021.04.137
    [5]
    MA M L , LIAO Z J, SU X W, et al. Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 608(1): 2203-2212.
    [6]
    ZENG Q, CHEN P, YU Q, et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties[J]. Scientific Reports, 2017, 7(1): 8388. DOI: 10.1038/s41598-017-08293-3
    [7]
    GUNWANT D, VEDRTNAM A. Microwave absorbing properties of carbon fiber based materials: A review and prospective[J]. Journal of Alloys and Compounds, 2021, 881(6): 160572.
    [8]
    SHI X F, YOU W B, LI X, et al. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber[J]. Chemical Engineering Journal, 2021, 415: 128951. DOI: 10.1016/j.cej.2021.128951
    [9]
    YANG Y, LIU L D, ZHU H F, et al. Critical control of highly stable nonstoichiometric Mn-Zn ferrites with outstanding magnetic and electromagnetic performance for gigahertz high-frequency applications[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16609-16619.
    [10]
    谷建宇, 马晨, 周必成, 等. 活性炭/磁性金属微波吸收剂的制备和吸波性能研究[J]. 微波学报, 2014, 30(S1): 602-604.

    GU Jianyu, MA Chen, ZHOU Bicheng, et al. Preparation and performance study of activated carbon/magneticmetal hybrid as microwave absorbent[J]. Journal of Microwaves, 2014, 30(S1): 602-604(in Chinese).
    [11]
    QING Y C, LI Y, LI W, et al. Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications[J]. Journal of Materials Chemistry C, 2021, 9(4): 1205-1214. DOI: 10.1039/D0TC05112H
    [12]
    曹敏, 邓雨希, 徐康, 等. 新型碳基磁性复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(12): 3004-3016.

    CAO Min, DENG Yuxi, XU Kang, et al. Research progress of new carbon based magnetic composite electromagnetic waveabsorbingmaterials[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3004-3016(in Chinese).
    [13]
    LYU L F, WANG F L, ZHANG X, et al. CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers[J]. Carbon, 2021, 172: 488-496. DOI: 10.1016/j.carbon.2020.10.021
    [14]
    YANG Z, XU T T, LI H, et al. Zero-dimensional carbon nanomaterials for fluorescent sensing and imaging[J]. Chemical Reviews, 2023, 123(18): 11047-11136. DOI: 10.1021/acs.chemrev.3c00186
    [15]
    SU S H, YU J H, LIU X G, et al. Fe nanoparticles embedded in polyaniline-derived carbon fibers as broad bandwidth microwave absorbers for GHz electromagnetic wave[J]. Solid State Communications, 2021, 334-335: 114400. DOI: 10.1016/j.ssc.2021.114400
    [16]
    XIAO T, KUANG J L, ZHENG Q F, et al. Interfacial polarization and tunable dielectric properties of coaxial SiC/CFs materials[J]. Journal of Alloys and Compounds, 2020, 831: 154753. DOI: 10.1016/j.jallcom.2020.154753
    [17]
    曾强, 王荣超, 张小兰, 等. 电磁吸波材料研究进展[J]. 江西化工, 2021, 37(6): 100-103. DOI: 10.3969/j.issn.1008-3103.2021.06.028

    ZENG Qiang, WANG Rongchao, ZHANG Xiaolan, et al. Research progress of electromagnetic wave absorption materials[J]. Jiangxi Chemical Industry, 2021, 37(6): 100-103(in Chinese). DOI: 10.3969/j.issn.1008-3103.2021.06.028
    [18]
    YANG B T, FANG J F, XU C Y, et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption[J]. Nano-Micro Letters, 2022, 14(1): 1-13. DOI: 10.1007/s40820-021-00751-y
    [19]
    ZENG X, CHENG X, YU R, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606-623. DOI: 10.1016/j.carbon.2020.07.028
    [20]
    HOU Y, CHENG L F, ZHANG Y N, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7265-7271.
    [21]
    XU H X, HE Z Z, LI Y R, et al. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption[J]. Carbon, 2023, 213: 118290. DOI: 10.1016/j.carbon.2023.118290
    [22]
    张明伟, 曲冠达, 庞梦瑶, 等. 电磁屏蔽机制及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(S1): 62-70.

    ZHANG Mingwei QU Guanda, PANG Mengyao, et al. Research progress of electromagnetic shielding mechanism and coated/structural absorbing composite materials[J]. Materials Reports, 2021, 35(S1): 62-70(in Chinese).
    [23]
    DAI S, HE Y, HUANG H, et al. Electrodeposited CoCu/Cu meta-conductor with suppressed skin effect for next generation radio frequency electronics[J]. Journal of Alloys and Compounds, 2019, 778: 156-162. DOI: 10.1016/j.jallcom.2018.11.099
    [24]
    LIU X G, YU J Y, CUI C Y, et al. Flower-like BiOI microsphere/Ni@C nanocapsule hybrid composites and their efficient microwave absorbing activity[J]. Journal of Physics D: Applied Physics, 2018, 51(26): 265002. DOI: 10.1088/1361-6463/aac7d1
    [25]
    SHAO T Q, MA H, WANG J, et al. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material[J]. Journal of the European Ceramic Society, 2020, 40(5): 2013-2019. DOI: 10.1016/j.jeurceramsoc.2020.01.036
    [26]
    WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65: 124-139. DOI: 10.1016/j.carbon.2013.07.110
    [27]
    CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon 2010, 48(3), 788-796.
    [28]
    WANG X Y, XING X F, ZHU H S, et al. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective[J]. Advances in Colloid and Interface Science, 2023, 318: 102960. DOI: 10.1016/j.cis.2023.102960
    [29]
    SHARMA S, PARNE S R, PANDA S S S, et al. Progress in microwave absorbing materials: A critical review[J]. Advances in Colloid and Interface Science, 2024, 327: 103143. DOI: 10.1016/j.cis.2024.103143
    [30]
    ZHOU C, WU C, YAN M, et al. Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth[J]. ACS Applied Nano Materials, 2018, 1(9): 5179-5187. DOI: 10.1021/acsanm.8b01203
    [31]
    CHEN J C, HAN Z, SUN C Q, et al. Air-microwave simultaneously induced carbon fiber surface oxidation and magnetism adjustment by CoOx nanoparticles rapid assembly for interface enhancement and electromagnetic wave absorption of its composites[J]. Journal of Colloid and Interface Science, 2025, 678(Part A): 785-794.
    [32]
    LV H P, WU C, TANG J, et al. Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021, 411: 128445. DOI: 10.1016/j.cej.2021.128445
    [33]
    GUO Z Q, LAN D, JIA Z R, et al. Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 17(1): 515-535.
    [34]
    ZHAO P Y, WANG H Y, CAI B, et al. Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers[J]. Nano Research, 2022, 15(9): 7788-7796. DOI: 10.1007/s12274-022-4675-x
    [35]
    YANG P A, HUANG Y, LI R, et al. Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties[J]. Chemical Engineering Journal, 2022, 430: 132878. DOI: 10.1016/j.cej.2021.132878
    [36]
    LI W, WANG L, LI G, et al. Single-crystal octahedral CoFe2O4 nanoparticles loaded on carbon balls as a lightweight microwave absorbent[J]. Journal of Alloys and Compounds, 2015, 633: 11-17 DOI: 10.1016/j.jallcom.2015.02.006
    [37]
    WANG L N, JIA X L, LI Y F, et al. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. Journal of Materials Chemistry, 2014, 2(36): 14940-14946. DOI: 10.1039/C4TA02815E
    [38]
    LIU Y, CUI T T, WU T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach[J]. Nanotechnology, 2016, 27(16): 165707. DOI: 10.1088/0957-4484/27/16/165707
    [39]
    MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites Part B: Engineering, 2018, 137: 260-277. DOI: 10.1016/j.compositesb.2017.11.023
    [40]
    GREEN M, LIU Z Q, XIANG P, et al. Ferric metal-organic framework for microwave absorption[J]. Materials Today Chemistry, 2018, 9: 140-148. DOI: 10.1016/j.mtchem.2018.06.003
    [41]
    SNOEK J L. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s[J]. Physica, 1948, 14(4): 207-217. DOI: 10.1016/0031-8914(48)90038-X
    [42]
    WU D, DENG S L, WANG Y Q, et al. Hierarchical porous carbon fibers for broadband and tunable high-performance microwave absorption[J]. Materials Research Bulletin, 2024, 172: 112653. DOI: 10.1016/j.materresbull.2023.112653
    [43]
    DENG Y, YANG M H, LIU Q X, et al. Biologically inspired nanoporous PAN/PMMA/β-CD carbon fibers for efficient microwave absorption[J]. ACS Applied Nano Materials, 2024, 7(3): 3199-3209. DOI: 10.1021/acsanm.3c05523
    [44]
    LIU S J, WANG J, ZHANG B, et al. Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation[J]. Carbon, 2024, 219: 118802. DOI: 10.1016/j.carbon.2024.118802
    [45]
    JIN D, YANG X L, WEI Y. Preparation and enhancement microwave absorption properties of carbon fibers coated with CoNi alloy by solvothermal[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(7): 4510-4522. DOI: 10.1007/s10854-021-07641-4
    [46]
    SUN M X, LI Z J, WEI B, et al. MOFs derived Fe/Co/C heterogeneous composite absorbers for efficient microwave absorption[J]. Synthetic Metals, 2023, 292: 117229. DOI: 10.1016/j.synthmet.2022.117229
    [47]
    WU F, YANG K, LI Q, et al. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption[J]. Carbon, 2021, 173: 918-931. DOI: 10.1016/j.carbon.2020.11.088
    [48]
    CHENG J B, ZHAO H B, ZHANG A N, et al. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 126(31): 266-274.
    [49]
    LIU P Z, GAO T D, HE W J, et al. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption[J]. Carbon, 2023, 202: 244-253. DOI: 10.1016/j.carbon.2022.10.089
    [50]
    YAN H, DONG Y Y, CAI L, et al. Construction of 1D biomass-derived tubular carbon fiber/Ni nanoparticles composite for broadband and lightweight microwave absorbers[J]. Carbon, 2022, 200: 317-326. DOI: 10.1016/j.carbon.2022.08.072
    [51]
    ZHANG F, LI N, SHI J F, et al. Cation bimetallic MOF anchored carbon fiber for highly efficient microwave absorption[J]. Small, 2024, 20(32): 2312135. DOI: 10.1002/smll.202312135
    [52]
    CAI W J, JIANG J G, ZHANG Z D, et al. Carbon nanofibers embedded with Fe-Co alloy nanoparticles via electrospinning as lightweight high-performance electromagnetic wave absorbers[J]. Rare Metals, 2024, 43(6): 2769-2783. DOI: 10.1007/s12598-023-02592-7
    [53]
    SUN Q H, ZHAI H C, LIU Y F, et al. Kirkendall effect-assisted electrospinning porous FeCo/Zn@C nanofibers featuring well-dispersed FeCo nanoparticles for ultra-wide electromagnetic wave absorption[J]. Rare Metals, 2024: 1-13.
    [54]
    LI S Y, TIAN X X, WANG J F, et al. Design and synthesis of core-shell structure 3D-graphene/Fe3O4@N-C composite derived from Fe-MOF as lightweight microwave absorber[J]. Diamond and Related Materials, 2022, 124: 108941. DOI: 10.1016/j.diamond.2022.108941
    [55]
    SUN Q L, SUN L, CAI Y Y, et al. Activated carbon fiber/Fe3O4 composite with enhanced electromagnetic wave absorption properties[J]. RSC Advances, 2018, 8(61): 35337-35342. DOI: 10.1039/C8RA05872E
    [56]
    MOVASSAGH-ALANAGH F, JALILIAN S, SHEMSHADI R, et al. Fabrication of microwave absorbing Fe3O4/MWCNTs@CFs nanocomposite by means of an electrophoretic co-deposition process[J]. Synthetic Metals, 2019, 250: 20-30. DOI: 10.1016/j.synthmet.2019.02.006
    [57]
    LIANG H S, XING H, QIN M, et al. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105959. DOI: 10.1016/j.compositesa.2020.105959
    [58]
    YUAN S T, WANG T C, FENG T, et al. Electromagnetic wave absorption of fabricated Fe/Fe3O4/C hollow fibers derived from ceiba fiber templates[J]. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2024, 299: 117057.
    [59]
    FENG A L, HOU T Q, JIA Z R, et al. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber[J]. RSC Advances, 2020, 10(18): 10510-10518. DOI: 10.1039/C9RA10327A
    [60]
    WANG X Y, LV X W, LIU Z W, et al. Multi-interfacial 1D magnetic ferrite@C fibers for broadband microwave absorption[J]. Materials Today Physics, 2023, 35: 101140. DOI: 10.1016/j.mtphys.2023.101140
    [61]
    YE W, SUN Q L, ZHANG G Y. Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites[J]. Ceramics International, 2019, 45(4): 5093-5099. DOI: 10.1016/j.ceramint.2018.11.212
    [62]
    DONG Y Y, ZHU X J, PAN F, et al. Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1002-1014. DOI: 10.1007/s42114-021-00277-2
    [63]
    DU B, CAI M, WANG X, et al. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites[J]. Journal of Advanced Ceramics, 2021, 10(4): 832-842. DOI: 10.1007/s40145-021-0476-z
    [64]
    CHEN T Y, JIANG S, LI L L, et al. Vertically aligned MnO2 nanostructures on carbon fibers with tunable electromagnetic wave absorption performance[J]. Applied Surface Science, 2022, 589: 152858. DOI: 10.1016/j.apsusc.2022.152858
    [65]
    LIU X D, HUANG Y, ZHAO X X, et al. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 616: 347-359. DOI: 10.1016/j.jcis.2022.02.062
    [66]
    WANG X, ZHANG L Y, DING E J, et al. Seed-assisted in situ ZIF-8 growth on carbon nanofibers for enhanced microwave absorption[J]. Carbon, 2023, 214: 118316. DOI: 10.1016/j.carbon.2023.118316
    [67]
    JIAO Z B, HUYAN W J, YAO J R, et al. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling[J]. Journal of Materials Science & Technology, 2022, 113: 166-174.
    [68]
    TAN D L, WANG Q, LI M R, et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 492: 152245. DOI: 10.1016/j.cej.2024.152245
    [69]
    CUI Y H, YANG K, LYU Y T, et al. Hollow nitrogen-doped carbon nanofibers filled with MnO2 nanoparticles/nanosheets as high-performance microwave absorbing materials[J]. Carbon, 2022, 196: 49-58. DOI: 10.1016/j.carbon.2022.04.044
    [70]
    CHEN T Y, ZHOU F, CAI X D, et al. Flexible electromagnetic wave absorption material: Multiscale synergistic approach to achieve whole X-band absorption and thermal stealth property[J]. Carbon, 2023, 210: 118048 DOI: 10.1016/j.carbon.2023.118048
    [71]
    HOU S K, WANG Y, GAO F, et al. In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber[J]. Materials & Design, 2023, 225: 111576.
    [72]
    LIU X, WANG S H, QIU J F, et al. Construction of a 3D spider web structure with spherical Ho2O3 wrapped by carbon nanofibers for high-efficiency microwave absorption and corrosion protection[J]. Carbon, 2024, 230: 119696. DOI: 10.1016/j.carbon.2024.119696
    [73]
    LIU T, HUANG L, WANG X H, et al. A rare-earth oxide@carbon nanofiber aerogel for self-cleaning, infrared thermal camouflage and high-efficiency microwave absorption[J]. Journal of Materials Research and Technology, 2023, 25: 2676-2689. DOI: 10.1016/j.jmrt.2023.05.218
    [74]
    SUN Y, WANG Y J, MA H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon, 2021, 178: 515-527. DOI: 10.1016/j.carbon.2021.03.032
    [75]
    GUO R D, SU D, ZOU K L, et al. N-doped carbon fibers with embedded ZnFe and Fe3C nanoparticles for microwave absorption[J]. ACS Applied Nano Materials, 2021, 4(10): 11070-11079. DOI: 10.1021/acsanm.1c02532
    [76]
    LUO J L, HAO G Z, XIAO L, et al. Boosting electromagnetic wave absorption properties via the sulfidation strategy of Fe/Fe3C/N-doped carbon nanorods hybrids[J]. Ceramics International, 2022, 48(8): 11346-11355. DOI: 10.1016/j.ceramint.2021.12.358
    [77]
    GUO R D, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3084-3094.
    [78]
    JIANG B, SHANG J X, ZHANG F Y, et al. Electrospinning fabrication of hollow C@TiO2/Fe3C nanofibers composites for excellent wave absorption at a low filling content[J]. Chemical Engineering Journal, 2024, 495: 153663. DOI: 10.1016/j.cej.2024.153663
    [79]
    LI X, XU D M, ZHOU D, et al. Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption[J]. Carbon, 2023, 208: 374-383. DOI: 10.1016/j.carbon.2023.03.054
    [80]
    朱莉莉, 康帅, 胡祖明, 等. MXene及其复合吸波材料组成与结构的研究进展[J]. 复合材料学报, 2023, 40(6): 3167-3186.

    ZHU Lili, KANG Shuai, HU Zuming, et al. Research progress in composition and structure of MXene and its composite wave absorbingmaterials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3167-3186(in Chinese).
    [81]
    NEGI P, GUPTA A, KUMAR P, et al. MXene/cobalt ferrite/carbon materials based composites for efficient microwave absorption[J]. Materials Chemistry and Physics, 2024, 320: 129448. DOI: 10.1016/j.matchemphys.2024.129448
    [82]
    WANG B J, LI S K, HUANG F Z, et al. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption[J]. Carbon, 2022, 187: 56-66. DOI: 10.1016/j.carbon.2021.10.080
    [83]
    WU Z, TAN X L, WANG J Q, et al. MXene hollow spheres supported by a C-Co exoskeleton grow MWCNTs for efficient microwave absorption[J]. Nano-Micro Letters, 2024, 16(6): 82-100.
    [84]
    WANG J Q, WU Z, XING Y Q, et al. Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow Carbon/MXene/Mo2C microtube[J]. Small, 2023, 19(14): 2207051. DOI: 10.1002/smll.202207051
    [85]
    ZHANG Y, LAN D, HOU T Q, et al. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2Tx MXene fabric with ultra-wide absorption band[J]. Carbon, 2024, 230: 119594. DOI: 10.1016/j.carbon.2024.119594
    [86]
    LIU Y, XU X M, SHAO Z P, et al. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Materials, 2020, 26: 1-22. DOI: 10.1016/j.ensm.2019.12.019
    [87]
    YANG Y F, XU D M, LYU L F, et al. Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106246. DOI: 10.1016/j.compositesa.2020.106246
    [88]
    WANG W J, WEN J Y, HOU X W, et al. Enhanced microwave absorption of superlattice C-CuS/MXene composites with rich heterogeneous interfaces and conductive network synergies[J]. Materials Today Physics, 2023, 35: 101108. DOI: 10.1016/j.mtphys.2023.101108
    [89]
    WU S M, WANG C J, TANG Y X, et al. Metal-organic framework-derived hierarchical Cu9S5/C nanocomposite fibers for enhanced electromagnetic wave absorption[J]. Advanced Fiber Materials, 2024, 6(2): 430-443. DOI: 10.1007/s42765-023-00362-9
    [90]
    CHENG R R, WANG Y, DI X C, et al. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions[J]. Journal of Materials Science & Technology, 2022, 129: 15-26.
    [91]
    WU S M, QIAO J, TANG Y X, et al. Heterogeneous Cu9S5/C nanocomposite fibers with adjustable electromagnetic parameters for efficient electromagnetic absorption[J]. Journal of Colloid and Interface Science, 2023, 630: 47-56. DOI: 10.1016/j.jcis.2022.10.075
    [92]
    GUO Y M, LI X X, GE D W, et al. Hollow Co9S8-carbon fiber hierarchical heterojunction with Schottky contacts for tunable microwave absorption[J]. Applied Surface Science, 2024, 671: 160708. DOI: 10.1016/j.apsusc.2024.160708
    [93]
    ZHANG H B, LIU T T, HUANG Z H, et al. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers[J]. Journal of Materiomics, 2022, 8(2): 327-334. DOI: 10.1016/j.jmat.2021.09.003
    [94]
    CHENG Y, GUO Y H, ZHANG Z Y, et al. Facile synthesis of NixCo3-xS4 hollow nanoprism with broader electromagnetic absorption properties: Effect of Ni/Co atomic ratios[J]. Journal of Alloys and Compounds, 2018, 767: 323-329. DOI: 10.1016/j.jallcom.2018.06.078
    [95]
    DING J W, SONG K, GONG C C, et al. Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers[J]. Journal of Colloid and Interface Science, 2022, 607: 1287-1299. DOI: 10.1016/j.jcis.2021.08.189
    [96]
    LI B, WANG F L, WANG K J, et al. Metal sulfides based composites as promising efficient microwave absorption materials: A review[J]. Journal of Materials Science & Technology, 2022, 104: 244-268.
    [97]
    LUO K C, XU C Y, DU Y Q, et al. Multidimensional engineering induced interfacial polarization by in-situ confined growth of MoS2 nanosheets for enhanced microwave absorption[J]. Small, 2024, 20(44): 2402729. DOI: 10.1002/smll.202402729
    [98]
    LIU J L, WANG M, ZHANG L M, et al. Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 591: 148-160. DOI: 10.1016/j.jcis.2021.01.110
    [99]
    WANG X, CAO X H, DING E J, et al. Kapok fiber-derived hollow carbon structure decorated with hydrangea-like MoS2 as sustainable and efficient electromagnetic wave absorbing composite fibers[J]. Carbon, 2024, 221: 118887. DOI: 10.1016/j.carbon.2024.118887
    [100]
    LIU X D, ZHANG S, YU M, et al. WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption[J]. Chemical Engineering Journal, 2023, 465: 142932. DOI: 10.1016/j.cej.2023.142932
    [101]
    JIANG H T, WANG C J, CUI B W, et al. Lotus leaf derived NiS/carbon nanofibers/porous carbon heterogeneous structures for strong and broadband microwave absorption[J]. Small, 2023, 19(50): 2304918. DOI: 10.1002/smll.202304918
    [102]
    LI H M, FENG Y, WU J D, et al. Preparation of carbon fibers@NiS/Ni3S4@MoS2 with core-sheath structure for high efficiency and wide-bandwidth microwave absorption[J]. Ceramics International, 2022, 48(22): 33280-33287. DOI: 10.1016/j.ceramint.2022.07.271
    [103]
    CUI Y, LI C J, LU J Q, et al. Enhanced anti-corrosion and microwave absorption properties of novel binary titanium niobium nitrides nanofiber[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(5): 337. DOI: 10.1007/s10854-024-12114-5
    [104]
    崔燚, 魏恒勇, 杨静凯, 等. 氮化物吸波材料研究进展[J]. 材料工程, 2020, 48(6): 82-90. DOI: 10.11868/j.issn.1001-4381.2019.000829

    CUI Yan, WEI Hengyong, YANG Jingkai, et al. State-of-art of nitride microwave absorption materials[J]. Journal of Materials Engineering, 2020, 48(6): 82-90(in Chinese). DOI: 10.11868/j.issn.1001-4381.2019.000829
    [105]
    YU D, SHI G M, SHI F N A, et al. N-doped carbon nanofiber embedded with TiN nanoparticles: Atype of efficient microwave absorbers with lightweight and wide- bandwidth[J]. Journal of Alloys and Compounds, 2022, 920: 165791. DOI: 10.1016/j.jallcom.2022.165791
    [106]
    TONG X X, GAO X Q, LI S J. Structure optimization of vanadium nitride/carbon fibers with high stability for microwave absorption[J]. Materials Chemistry and Physics, 2023, 296: 127296. DOI: 10.1016/j.matchemphys.2023.127296
    [107]
    DAI Z Z, YU X L, WANG Y, et al. Magnetic carbon fiber/reduced graphene oxide film for electromagnetic microwave absorption[J]. Ceramics International, 2023, 49(22, Part B): 37051-37058.
    [108]
    WANG X H, QIN J, CUI J, et al. Reduced graphene oxide/carbon nanofiber based composite fabrics with spider web-like structure for microwave absorbing applications[J]. Advanced Fiber Materials, 2022, 4(5): 1164-1176. DOI: 10.1007/s42765-022-00157-4
    [109]
    SAEED M, HAQ R S U, AHMED S, et al. Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers[J]. Journal of Alloys and Compounds, 2024, 970: 172625. DOI: 10.1016/j.jallcom.2023.172625
    [110]
    WANG C J, WANG Y X, JIANG H T, et al. Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption[J]. Carbon, 2022, 200: 94-107. DOI: 10.1016/j.carbon.2022.08.053
    [111]
    KONG L, ZHANG S, LIU Y, et al. Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials[J]. Carbon, 2023, 207: 198-206. DOI: 10.1016/j.carbon.2023.03.024
    [112]
    ZHU J H, LAN D, LIU X H, et al. Porous structure fibers based on multi-element heterogeneous components for optimized electromagnetic wave absorption and self-anticorrosion performance[J]. Small, 2024, 20(47): 2403689. DOI: 10.1002/smll.202403689
    [113]
    XU H Y, LI B, JIANG X Y, et al. Fabrication of N-doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption[J]. Carbon, 2023, 201: 234-243. DOI: 10.1016/j.carbon.2022.09.033
    [114]
    TONG S Y, LI Y, DING X, et al. In situ construction of FeCo nanoparticles decorated nitrogen-doped carbon nanofibers with surface-grown carbon nanotubes as lightweight and high-efficiency microwave absorbers with good environmental tolerance[J]. Journal of Environmental Chemical Engineering, 2025, 13(1): 115141. DOI: 10.1016/j.jece.2024.115141
    [115]
    GAO Z, ZHU J D, RAJABPOUR S, et al. Graphene reinforced carbon fibers[J]. Science Advances, 2020, 6(17): eaaz4191. DOI: 10.1126/sciadv.aaz4191
    [116]
    LU Z, WANG Y, DI X C, et al. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption[J]. Carbon, 2022, 197: 466-475. DOI: 10.1016/j.carbon.2022.06.075
    [117]
    XU X J, YAO F C, Abu Ali O A, et al. Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2002-2011. DOI: 10.1007/s42114-022-00538-8
    [118]
    LI H, LI J W, CHU W, et al. Flexible hierarchical polyimide/polypyrrole/carbon nanofiber composite films for tunable electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2024, 7(7): 7783-7793. DOI: 10.1021/acsanm.4c00415
    [119]
    YUAN L Y, ZHAO W X, MIAO Y K, et al. Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 70. DOI: 10.1007/s42114-024-00864-z
    [120]
    HOU S K, WANG Y, GAO F, et al. A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture[J]. Chemical Engineering Journal, 2023, 471: 144779. DOI: 10.1016/j.cej.2023.144779
    [121]
    MENG X W, QIAO J, LIU J R, et al. Core–shell nanofibers/polyurethane composites obtained through electrospinning for ultra-broadband electromagnetic wave absorption[J]. Advanced Composites and Hybrid Materials, 2024, 7(5): 149. DOI: 10.1007/s42114-024-00976-6
    [122]
    XING L L, CHENG H R, LI Y, et al. MoS2 decorated on 1D MoS2@Co/NC@CF hierarchical fibrous membranes for enhanced microwave absorption[J]. Small, 2024, 21: 2407337.
    [123]
    MENG X W, ZHANG S T, YU M J, et al. The nitriding treatment of ternary nanofibers toward outstanding electromagnetic wave absorption performance[J]. Composites Part B: Engineering, 2025, 288: 111922. DOI: 10.1016/j.compositesb.2024.111922

Catalog

    Article Metrics

    Article views (45) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return