Citation: | WANG Ronghui, CHEN Junxu, YU Zhaopeng, YU Xinquan, ZHANG Youfa. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4079-4091. |
[1] |
HOANG A T, Nižetić S, DUONG X Q, et al. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water[J]. Chemosphere,2021,277:130274. doi: 10.1016/j.chemosphere.2021.130274
|
[2] |
GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions[J]. Journal of Materials Chemistry A,2017,5(2):16025-16058.
|
[3] |
ISMAIL N H, SALLEH W N W, ISMAIL A F, et al. Hydrophilic Polymer-Based Membrane for Oily Wastewater Treatment: A Review[J]. Seperation and Purification Technology,2020,233(3):116007.
|
[4] |
LI S H, HUANG J Y, CHEN Z, et al. A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications[J]. Journal of Materials Chemistry A,2017,5(4):31-55.
|
[5] |
XU X T, WAN X Z, LI H N, et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform[J]. Nano Research,2022,15:5653-5662. doi: 10.1007/s12274-022-4118-8
|
[6] |
YIN K, CHU D K, DONG X R, et al. Femtosecond Laser Induced Robust Periodic Nanoripple Structured Mesh for Highly Efficient Oil-Water Separation[J]. Nanoscale,2017,9(6):14229-14235.
|
[7] |
ZHU Y Z, WANG D, JIANG L, et al. Recent Prgress in Developing Advanced Membranes for Emulsified Oil/Water Separation[J]. NPG Asia Materials,2014,6(7):120-131.
|
[8] |
邵云飞, 仲梁维. 重力沉降式油水分离技术的改进[J]. 通信电源技术, 2015, 32(8):174-177+193. doi: 10.3969/j.issn.1009-3664.2015.06.057
SHAO Y F, ZHONG L W. The Improvement of Oil-Water Separation Technique Based on Gravittional Sedimentation[J]. Telecom Power Technology,2015,32(8):174-177+193(in Chinese). doi: 10.3969/j.issn.1009-3664.2015.06.057
|
[9] |
井博勋, 刘雅洁. 含油污水处理技术方法简述[J]. 天津化工, 2015, 29(9):9-10. doi: 10.3969/j.issn.1008-1267.2015.04.003
JING B X, LIU Y J. Brief introduction of treatment technology of wastewater with oil[J]. Tianjin Chemical Industry,2015,29(9):9-10(in Chinese). doi: 10.3969/j.issn.1008-1267.2015.04.003
|
[10] |
Ihaddadena S, Aberkanea D, Boukerrouia A, et al. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica)[J]. Journal of Water Process Engineering,2022,49:102952. doi: 10.1016/j.jwpe.2022.102952
|
[11] |
毛雪慧, 徐明芳, 刘辉, 等. 光合细菌固定化及其处理含油废水的研究[J]. 农业环境科学学报, 2009, 28(11):1494-1499. doi: 10.3321/j.issn:1672-2043.2009.07.029
MAO X H, XU M F, LIU H, et al. Immobilization of Photosynthetic Bacteria for Oily Wastewater Treatment[J]. Journal of Agro-Environment Science,2009,28(11):1494-1499(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.07.029
|
[12] |
魏平方, 邓皓, 邹斌. 含油污水处理技术与发展趋势[J]. 油气田环境保护, 2000(12):34-36. doi: 10.3969/j.issn.1005-3158.2000.01.014
WEI P F, DENG H, ZOU B. The Treatment Technology and Development Trend about Oily Sewage[J]. Environmental Protection of Oil & Gas Fields,2000(12):34-36(in Chinese). doi: 10.3969/j.issn.1005-3158.2000.01.014
|
[13] |
孙玉凤, 徐海波. 油水分离膜的应用与研究进展[J]. 现代化工, 2022, 42(6):59-63. doi: 10.16606/j.cnki.issn0253-4320.2022.06.013
SUN Y F, XUN H B. Application and research progress on oil-water separation membrane[J]. Modern Chemical Industry,2022,42(6):59-63(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2022.06.013
|
[14] |
王瑶, 曾子康, 李秋雯, 等. 油水分离膜表面结构可控合成及性能研究[J]. 过程工程学报, 2022, 22(9):1297-1304.
WANG Y, ZENG Z K, LI Q W, et al. Rational construction of hydrophobic interface to separate oil from water[J]. The Chinese Journal of Process Engineering,2022,22(9):1297-1304(in Chinese).
|
[15] |
闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5):2893-2899. doi: 10.16085/j.issn.1000-6613.2020-2424
YAN H Q, ZHENG W R, ZHANG G Y, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress,2021,40(5):2893-2899(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-2424
|
[16] |
ZHANG X Y, LI Z, LIU K S, et al. Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation[J]. Advanced Functional Materials,2013,23(16):2881-2886.
|
[17] |
薛众鑫, 江雷. 仿生水下超疏油表面[J]. 高分子学报, 2012(17):1091-1101.
XUE Z X, JIANG L. Bioinspired underwater superoleophobic surfaces[J]. ACTA POLYMERICA SINICA,2012(17):1091-1101(in Chinese).
|
[18] |
FENG L, ZHANG Z Y, MAI Z H, et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angewandte Chemie-International Edition,2004,43(18):2012-2014.
|
[19] |
SONG Y H, SHI L A, XING H Y, et al. A Magneto-Heated Ferrimagnetic Sponge for Continuous Recovery of Viscous Crude Oil[J]. Advanced Materials,2021,33(28):2100074.
|
[20] |
LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-Based Superoleophobic/Superhydrophilic Coating for Oil-Water Separation and Oil Purification[J]. ACS Applied Materials & Interfaces,2020,12(29):18074-18083.
|
[21] |
ONGUN M Z, OGUZLAR S, KARTAL U, et al. Energy Harvesting Nanogenerators: Electrospun Beta-PVDF Nanofibers Accompanying ZnO NPs and ZnO@Ag NPs[J]. Solid State Sciences,2021,122(30):106772.
|
[22] |
LI H, ZHANG J Q, ZHU L, et al. Reusable Membrane with Multifunctional Skin Layer for Effective Removal of Insoluble Emulsified Oils and Soluble Dyes[J]. Journal of Hazardous Materials,2021,415(31):125677.
|
[23] |
GUO W W, WANG X, HUANG J L, et al. Construction of Durable Flame-Retardant and Robust Superhydrophobic Coatings on Cotton Fabrics for Water-Oil Separation Application[J]. Chemical Engineering Journal,2020,398(32):125661.
|
[24] |
李国滨, 刘海峰, 李金辉, 等. 超疏水材料的研究进展[J]. 高分子材料科学与工程, 2020, 36(33):142-150. doi: 10.16865/j.cnki.1000-7555.2020.0282
LI G B, LIU H F, LI J H, et al. Progress in Research of Preparation of Superhydrophobic[J]. POLYMER MATERIALS SCIENCE AND ENGINEERING,2020,36(33):142-150(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0282
|
[25] |
LIU M, ZHENG Y, ZHAI J, et al. Bioinspired Super-Antiwetting Interfaces with Special Liquid-Solid Adhesion[J]. Accounts of Chemical Research,2010,43(57):368-377.
|
[26] |
YOU H, SONG G, LIU Q, et al. A Facile Route for The Fabrication of A Superhydrophilic and Underwater Superoleophobic Phosphorylated PVA-Coated Mesh for Both Oil/Water Immiscible Mixture and Emulsion Separation[J]. Applied Surface Science,2021,537(58):624-635.
|
[27] |
GE J L, ZONG D D, JIN Q, et al. Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions[J]. Advanced Functional Materials,2018,28(59):1705051.
|
[28] |
BARKER J A, HENDERSON D. THEORIES OF LIQUIDS[J]. Annual Review of Physical Chemistry,1972,23(61):439.
|
[29] |
CHEN C L, CHEN S, CHEN L, et al. Underoil Superhydrophilic Metal Felt Fabricated by Modifying Ultrathin Fumed Silica Coatings for the Separation of Water-in-Oil Emulsions[J]. ACS Applied Materials & Interfaces,2020,12(62):27663-27671.
|
[30] |
生态环境部生态环境监测司、法规与标准司. 水质石油类和动植物油类的测定红外分光光度法: HJ 637-2018[S]. 北京: 中国环境出版社, 2019.
Department of Ecological Environment Monitoring, Department of Regulations and Standards, Ministry of Ecological Environment. Water quality—Determination of petroleum, animal fats and vegetable oils—Infrared spectrophotometry: HJ 637-2018[S]. Beijing: China Environmental Press, 2019(in Chinese).
|
[31] |
刘晓燕, 赵雨新, 赵海谦, 等. 刻蚀法制备超疏水金属表面的研究综述[J]. 功能材料与器件学报, 2019(4):8-10.
LIU X Y, ZHAO Y X, ZHAO H Q, et al. A review on preparation of superhydrophobic metal surface by etching[J]. JOURNAL OF FUNCTIONAL MATERIALS AND DEVICES,2019(4):8-10(in Chinese).
|
[32] |
YE L Q, ZHANG Y L, SONG C C, et al. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Materials letters,2017,188:316-318. doi: 10.1016/j.matlet.2016.09.043
|
[33] |
Jung S W, Park S Y, Choi W J, et al. Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film[J]. Journal of Industrial and Engineering Chemistry,2020,84:332-339. doi: 10.1016/j.jiec.2020.01.015
|
[34] |
KONG W T, LI F R, PAN Y L, et al. Hygro-responsive, Photo-decomposed Superoleophobic/Superhydrophilic Coating for On-Demand Oil-Water Separation[J]. ACS Applied Materials Interfaces,2021,13:35142-35152. doi: 10.1021/acsami.1c08500
|
[35] |
YOU X, WU H, ZHANG R, et al. Metal-Coordinated Sub-10 nm Membranes for Water Purification[J]. Nature Communications,2019,15:313.
|
[36] |
GUO W, WANG X, HUANG J, et al. Construction of Durable Flame-Retardant and Robust Superhydrophobic Coatings on Cotton Fabrics for Water-Oil Separation Application[J]. Chemical Engineering Journal,2020,398:125661. doi: 10.1016/j.cej.2020.125661
|
[37] |
FU C, GU L, ZENG ZX, et al. One-Step Transformation of Metal Meshes to Robust Superhydrophobic and Superoleophilic Meshes for Highly Efficient Oil Spill Cleanup and Oil/Water Separation[J]. ACS Applied Materials and Interfaces,2020,12(1):1850-1857. doi: 10.1021/acsami.9b17052
|
[38] |
XIE A, CUI J, YANG J, et al. Photo-Fenton Self-Cleaning Membranes with Robust Flux Recovery for An Efficient Oil/Water Emulsion Separation[J]. Journal of Materials Chemistry A,2019,7(14):8491-8502. doi: 10.1039/C9TA00521H
|
[39] |
DENG W S, WANG G, TANG L, et al. One-Step Fabrication of Transparent Barite Colloid with Dual Superhydrophilicity for Anti-Crude Oil Fouling and Anti-Fogging[J]. Journal of Colloid and Interface Science,2022,608:186-192. doi: 10.1016/j.jcis.2021.09.178
|
[40] |
TIAN D L, ZHANG X F, TIAN Y, et al. Photo-Induced Water-Oil Separation Based on Switchable Superhydrophobicity-Superhydrophilicity and Underwater Super-oleophobicity of the Aligned ZnO Nanorod Array-Coated Mesh Films[J]. Journal of Materials Chemistry A,2012,22:19652-19657. doi: 10.1039/c2jm34056a
|
[41] |
ZHANG H W, QI J Y, CHE Y L, et al. Continuous and efficient oil/water separation by special wettability granular filter media[J]. Water Reuse,2022,12(2):242-259.
|
[42] |
Zhang J Y, Fang W X, Zhang F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. Journal of Membrane Science,2020,608:118201. doi: 10.1016/j.memsci.2020.118201
|
[43] |
OH S T, KI S K, RYU S G, et al. Performance Analysis of Gravity-Driven Oil−Water Separation Using Membranes with Special Wettability[J]. Langmuir,2019,35:7769-7782. doi: 10.1021/acs.langmuir.9b00993
|
[44] |
LIU Y H, LI W, YUAN C, et al. Two-Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil–Water Separation[J]. Angew. Chem.,2022,134:e202113348.
|
[45] |
SONG M L, YU H Y, ZHU J Y, et al. Constructing Stimuli-Free Self-Healing, Robust and Ultrasensitive Biocompatible Hydrogel Sensors with Conductive Cellulose Nanocrystals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547
|
[46] |
TAO Q, HUANG S, LI X, et al. Counterion-Dictated Self-Cleaning Behavior of Polycation Coating upon Water Action: Macroscopic Dissection of Hydration of Anions[J]. Angewandte Chemie-International Edition,2020,59(67):14466-14472.
|
[47] |
DENG W S, WANG G, TANG L, et al. Viscous Oil De-Wetting Surfaces Based on Robust Superhydrophilic Barium Sulfate Nanocoating[J]. ACS Applied Materials & Interfaces,2021,13(68):27674-27686.
|