Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
WANG Ronghui, CHEN Junxu, YU Zhaopeng, et al. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001
Citation: WANG Ronghui, CHEN Junxu, YU Zhaopeng, et al. Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4082-4094. doi: 10.13801/j.cnki.fhclxb.20230215.001

Preparation and enduring effect oil-water separation performance of water-based superhydrophilic anti-fouling composite mesh membrane

doi: 10.13801/j.cnki.fhclxb.20230215.001
Funds:  National Natural Science Foundation of China (52071076)
  • Received Date: 2022-11-07
  • Accepted Date: 2022-12-25
  • Rev Recd Date: 2022-12-15
  • Available Online: 2023-02-15
  • Publish Date: 2023-07-15
  • Oily sewage is ubiquitous in the petrochemical industry, machinery manufacturing and other fields. Direct discharge not only wastes water and oil resources, pollutes the ecological environment, but also affects the survival and health of human beings and other organisms. The traditional oil-water separation method has strong limitations, such as poor economy and low separation efficiency. Based on 316 stainless mesh, a superhydrophilic/underwater oleophobic membrane that was resistant to long-term water immersion and oil pollution was developed. The water-based acrylic acid resin and water-based epoxy topcoat resin were selected as the binder, and the substrate was pretreated with phytic acid. The superhydrophilic/underwater oleophobic membrane coated with water-based coating was prepared using a one-step spraying method. It is found that the separation efficiency of wastewater with different oils can reach more than 98%, the water flux can reach more than 14000 L/(m2·h·bar), and the intrusion pressure of oil is 4.65 kPa. After 50 cycles of separating wastewater with N-hexane, the separation efficiency of the membrane can still reach more than 98%. After 180 days of water immersion, the membrane still maintains superhydrophilicity with a water flux of more than 6500 L/(m2·h·bar). After adding a small amount of surfactant of sodium dodecyl sulfate, the water flux of the membrane decreases by less than 50% after 50 pollution and cleaning cycles. This study provides technical references for the development and preparation of superhydrophilic separation membranes in the field of refined oily wastewater treatment.

     

  • loading
  • [1]
    HOANG A T, NIŽETIĆ S, DUONG X Q, et al. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water[J]. Chemosphere,2021,277:130274. doi: 10.1016/j.chemosphere.2021.130274
    [2]
    GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A,2017,5(31):16025-16058. doi: 10.1039/C7TA02070H
    [3]
    ISMAIL N H, SALLEH W N W, ISMAIL A F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: A review[J]. Seperation and Purification Technology,2020,233:116007. doi: 10.1016/j.seppur.2019.116007
    [4]
    LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A,2017,5(1):31-55. doi: 10.1039/c6ta07984a
    [5]
    XU X T, WAN X Z, LI H N, et al. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform[J]. Nano Research,2022,15:5653-5662. doi: 10.1007/s12274-022-4118-8
    [6]
    YIN K, CHU D K, DONG X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale,2017,9(37):14229-14235. doi: 10.1039/c7nr04582d
    [7]
    ZHU Y Z, WANG D, JIANG L, et al. Recent prgress in developing advanced membranes for emulsified oil/water separation[J]. NPG Asia Materials,2014,6:e101. doi: 10.1038/am.2014.23
    [8]
    邵云飞, 仲梁维. 重力沉降式油水分离技术的改进[J]. 通信电源技术, 2015, 32(6):174-177, 193. doi: 10.3969/j.issn.1009-3664.2015.06.057

    SHAO Yunfei, ZHONG Liangwei. The improvement of oil-water separation technique based on gravittional sedimentation[J]. Telecom Power Technology,2015,32(6):174-177, 193(in Chinese). doi: 10.3969/j.issn.1009-3664.2015.06.057
    [9]
    井博勋, 刘雅洁. 含油污水处理技术方法简述[J]. 天津化工, 2015, 29(4):9-10. doi: 10.3969/j.issn.1008-1267.2015.04.003

    JING Boxun, LIU Yajie. Brief introduction of treatment technology of wastewater with oil[J]. Tianjin Chemical Industry,2015,29(4):9-10(in Chinese). doi: 10.3969/j.issn.1008-1267.2015.04.003
    [10]
    IHADDADEN S, ABERKANE D, BOUKERROUI A, et al. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica)[J]. Journal of Water Process Engineering,2022,49:102952. doi: 10.1016/j.jwpe.2022.102952
    [11]
    毛雪慧, 徐明芳, 刘辉, 等. 光合细菌固定化及其处理含油废水的研究[J]. 农业环境科学学报, 2009, 28(7):1494-1499. doi: 10.3321/j.issn:1672-2043.2009.07.029

    MAO Xuehui, XU Mingfang, LIU Hui, et al. Immobilization of photosynthetic bacteria for oily wastewater treatment[J]. Journal of Agro-Environment Science,2009,28(7):1494-1499(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.07.029
    [12]
    魏平方, 邓皓, 邹斌. 含油污水处理技术与发展趋势[J]. 油气田环境保护, 2000(1):34-36. doi: 10.3969/j.issn.1005-3158.2000.01.014

    WEI Pingfang, DENG Hao, ZOU Bin. The treatment technology and development trend about oily sewage[J]. Environmental Protection of Oil & Gas Fields,2000(1):34-36(in Chinese). doi: 10.3969/j.issn.1005-3158.2000.01.014
    [13]
    孙玉凤, 徐海波. 油水分离膜的应用与研究进展[J]. 现代化工, 2022, 42(6):59-63, 68. doi: 10.16606/j.cnki.issn0253-4320.2022.06.013

    SUN Yufeng, XU Haibo. Application and research progress on oil-water separation membrane[J]. Modern Chemical Industry,2022,42(6):59-63, 68(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2022.06.013
    [14]
    王瑶, 曾子康, 李秋雯, 等. 油水分离膜表面结构可控合成及性能研究[J]. 过程工程学报, 2022, 22(9):1297-1304.

    WANG Yao, ZENG Zikang, LI Qiuwen, et al. Rational construction of hydrophobic interface to separate oil from water[J]. The Chinese Journal of Process Engineering,2022,22(9):1297-1304(in Chinese).
    [15]
    闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5):2893-2899. doi: 10.16085/j.issn.1000-6613.2020-2424

    YAN Hongqin, ZHENG Wenrui, ZHANG Guiyu, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress,2021,40(5):2893-2899(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-2424
    [16]
    ZHANG X Y, LI Z, LIU K S, et al. Bioinspired multifunctional foam with self-cleaning and oil/water separation[J]. Advanced Functional Materials,2013,23(22):2881-2886. doi: 10.1002/adfm.201202662
    [17]
    薛众鑫, 江雷. 仿生水下超疏油表面[J]. 高分子学报, 2012(10):1091-1101.

    XUE Zhongxin, JIANG Lei. Bioinspired underwater superoleophobic surfaces[J]. Acta Polymerica Sinica,2012(10):1091-1101(in Chinese).
    [18]
    FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. doi: 10.1002/anie.200353381
    [19]
    SONG Y H, SHI L A, XING H Y, et al. A magneto-heated ferrimagnetic sponge for continuous recovery of viscous crude oil[J]. Advanced Materials,2021,33(36):2100074. doi: 10.1002/adma.202100074
    [20]
    LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil-water separation and oil purification[J]. ACS Applied Materials & Interfaces,2020,12(15):18074-18083. doi: 10.1021/acsami.9b22625
    [21]
    ONGUN M Z, OGUZLAR S, KARTAL U, et al. Energy harvesting nanogenerators: Electrospun beta-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs[J]. Solid State Sciences,2021,122:106772. doi: 10.1016/j.solidstatesciences.2021.106772
    [22]
    LI H, ZHANG J Q, ZHU L, et al. Reusable membrane with multifunctional skin layer for effective removal of insoluble emulsified oils and soluble dyes[J]. Journal of Hazardous Materials,2021,415:125677. doi: 10.1016/j.jhazmat.2021.125677
    [23]
    GUO W W, WANG X, HUANG J L, et al. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application[J]. Chemical Engineering Journal,2020,398:125661. doi: 10.1016/j.cej.2020.125661
    [24]
    李国滨, 刘海峰, 李金辉, 等. 超疏水材料的研究进展[J]. 高分子材料科学与工程, 2020, 36(12):142-150. doi: 10.16865/j.cnki.1000-7555.2020.0282

    LI Guobin, LIU Haifeng, LI Jinhui, et al. Progress in research of preparation of superhydrophobic[J]. Polymer Materials Science and Engineering,2020,36(12):142-150(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0282
    [25]
    LIU M, ZHENG Y, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research,2010,43(3):368-377. doi: 10.1021/ar900205g
    [26]
    YOU H, SONG G, LIU Q, et al. A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation[J]. Applied Surface Science,2021,537:147986. doi: 10.1016/j.apsusc.2020.147986
    [27]
    GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials,2018,28(10):1705051. doi: 10.1002/adfm.201705051
    [28]
    BARKER J A, HENDERSON D. Theories of Liquids[J]. Annual Review of Physical Chemistry,1972,23(61):439-484. doi: 10.1146/annurev.pc.23.100172.002255
    [29]
    CHEN C L, CHEN S, CHEN L, et al. Underoil superhydrophilic metal felt fabricated by modifying ultrathin fumed silica coatings for the separation of water-in-oil emulsions[J]. ACS Applied Materials & Interfaces,2020,12(24):27663-27671. doi: 10.1021/acsami.0c03801
    [30]
    生态环境部生态环境监测司、法规与标准司. 水质石油类和动植物油类的测定红外分光光度法: HJ 637—2018[S]. 北京: 中国环境出版社, 2019.

    Department of Ecological Environment Monitoring, Department of Regulations and Standards, Ministry of Ecological Environment. Water quality—Determination of petroleum, animal fats and vegetable oils—Infrared spectrophotometry: HJ 637—2018[S]. Beijing: China Environmental Press, 2019(in Chinese).
    [31]
    刘晓燕, 赵雨新, 赵海谦, 等. 刻蚀法制备超疏水金属表面的研究综述[J]. 功能材料与器件学报, 2019, 25(4):221-228.

    LIU Xiaoyan, ZHAO Yuxin, ZHAO Haiqian, et al. A review on preparation of superhydrophobic metal surface by etching[J]. Journal of Functional Materials and Devices,2019,25(4):221-228(in Chinese).
    [32]
    YE L Q, ZHANG Y L, SONG C C, et al. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Materials Letters,2017,188:316-318. doi: 10.1016/j.matlet.2016.09.043
    [33]
    JUNG S W, PARK S Y, CHOI W J, et al. Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film[J]. Journal of Industrial and Engineering Chemistry,2020,84:332-339. doi: 10.1016/j.jiec.2020.01.015
    [34]
    KONG W T, LI F R, PAN Y L, et al. Hygro-responsive, photo-decomposed superoleophobic/superhydrophilic coating for on-demand oil-water separation[J]. ACS Applied Materials & Interfaces,2021,13(29):35142-35152. doi: 10.1021/acsami.1c08500
    [35]
    YOU X, WU H, ZHANG R, et al. Metal-coordinated sub-10 nm membranes for water purification[J]. Nature Communications,2019,15:313.
    [36]
    FU C, GU L, ZENG Z X, et al. One-step transformation of metal meshes to robust superhydrophobic and superoleophilic meshes for highly efficient oil spill cleanup and oil/water separation[J]. ACS Applied Materials & Interfaces,2020,12(1):1850-1857. doi: 10.1021/acsami.9b17052
    [37]
    XIE A, CUI J, YANG J, et al. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation[J]. Journal of Materials Chemistry A,2019,7(14):8491-8502. doi: 10.1039/C9TA00521H
    [38]
    DENG W S, WANG G, TANG L, et al. One-step fabrication of transparent barite colloid with dual superhydrophilicity for anti-crude oil fouling and anti-fogging[J]. Journal of Colloid and Interface Science,2022,608:186-192. doi: 10.1016/j.jcis.2021.09.178
    [39]
    TIAN D L, ZHANG X F, TIAN Y, et al. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater super-oleophobicity of the aligned ZnO nanorod array-coated mesh films[J]. Journal of Materials Chemistry A,2012,22:19652-19657. doi: 10.1039/c2jm34056a
    [40]
    ZHANG H W, QI J Y, CHE Y L, et al. Continuous and efficient oil/water separation by special wettability granular filter media[J]. Water Reuse,2022,12(2):242-259. doi: 10.2166/wrd.2022.102
    [41]
    ZHANG J Y, FANG W X, ZHANG F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. Journal of Membrane Science,2020,608:118201. doi: 10.1016/j.memsci.2020.118201
    [42]
    OH S T, KI S K, RYU S G, et al. Performance analysis of gravity-driven oil-water separation using membranes with special wettability[J]. Langmuir,2019,35:7769-7782. doi: 10.1021/acs.langmuir.9b00993
    [43]
    LIU Y H, LI W, YUAN C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition,2022,61(2):e202113348. doi: 10.1002/anie.202113348
    [44]
    SONG M L, YU H Y, ZHU J Y, et al. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547
    [45]
    TAO Q, WANG D, HUANG S, et al. Counterion-dictated self-cleaning behavior of polycation coating upon water action: Macroscopic dissection of hydration of anions[J]. Angewandte Chemie,2020,132(34):14574-14580. doi: 10.1002/ange.202002819
    [46]
    DENG W S, WANG G, TANG L, et al. Viscous oil de-wetting surfaces based on robust superhydrophilic barium sulfate nanocoating[J]. ACS Applied Materials & Interfaces,2021,13(23):27674-27686. doi: 10.1021/acsami.1c06913
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (542) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return