Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
HE Naipu, ZHANG Xuehui, ZHAO Xuerui, et al. Preparation and performance of graphene oxide/ZIF-7 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5707-5716. doi: 10.13801/j.cnki.fhclxb.20221228.001
Citation: HE Naipu, ZHANG Xuehui, ZHAO Xuerui, et al. Preparation and performance of graphene oxide/ZIF-7 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5707-5716. doi: 10.13801/j.cnki.fhclxb.20221228.001

Preparation and performance of graphene oxide/ZIF-7 composites

doi: 10.13801/j.cnki.fhclxb.20221228.001
Funds:  Science and Technology Plan of Gansu Province (20YF8GA032)
  • Received Date: 2022-11-09
  • Accepted Date: 2022-12-15
  • Rev Recd Date: 2022-12-13
  • Available Online: 2022-12-29
  • Publish Date: 2023-10-15
  • ZIF-7 crystals were in situ grown on graphene oxide (GO) by three synthetic routes, and the resulting graphene oxide/ZIF-7 composites (GZR-n) were characterized by PXRD, FTIR, SEM, TEM, and N2 isothermal adsorption-desorption. The effects of the synthetic routes on the growth, crystallinity, microscopic morphology and pore size of ZIF-7 crystals on GO were investigated. ZIF-7 crystals were grown on the surface and sheet of GO by three synthetic routes. The crystallinity of ZIF-7 crystals on GZR-n was significantly enhanced and some were wrapped by GO. The shape and size of ZIF-7 crystals growing on GZR-n were modulated by the synthesis routes. In particular, the ZIF-7 crystals are spherical particle with a diameter of 50 nm in GZR-II. For GZR-I and GZR-III, the ZIF-7 crystals are regular polyhedron with a size of 200 nm. Additional, their dispersion properties in solvents, adsorption properties and kinetic simulations for organic dyes were explored. GZR-n show good dispersion in methanol and chloroform. Compared with ZIF-7 crystals, the adsorption capacities of GZR-I, GZR-II and GZR-III for methylene blue are increased by 226%, 302% and 278%, respectively. The kinetic simulations indicate that the adsorption of GZR-II and GZR-III for methylene blue are chemisorption and that of GZR-I is physical adsorption.

     

  • loading
  • [1]
    CHENG P, WANG C H, KANETI Y V, et al. Practical MOF nanoarchitectonics: New strategies for enhancing the processability of MOFs for practical applications[J]. Langmuir,2020,36(16):4231-4249. doi: 10.1021/acs.langmuir.0c00236
    [2]
    LI S Z, HUO F W. Metal-organic framework composites: From fundamentals to applications[J]. Nanoscale,2015,7(17):7482-7501. doi: 10.1039/C5NR00518C
    [3]
    WANG P, LI X H, ZHANG P, et al. Transitional MOFs: Exposing metal sites with porosity for enhancing catalytic reaction performance[J]. ACS Applied Materials & Interfaces,2020,12(21):23968-23975.
    [4]
    XU J, LIU J, LI Z, et al. Optimized synthesis of Zr(IV) metal organic frameworks (MOFs-808) for efficient hydrogen storage[J]. New Journal of Chemistry,2019,43(10):4092-4099. doi: 10.1039/C8NJ06362A
    [5]
    LI C, HE N P, ZHAO X Z, et al. Chitosan/ZIF-8 composite beads fabricated by in situ growth of MOFs crystals on chitosan beads for CO2 adsorption[J]. ChemistrySelect,2022,7(4):e202103927. doi: 10.1002/slct.202103927
    [6]
    LIAN X, YAN B. Phosphonate MOFs composite as off-on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria[J]. Inorganic Chemistry,2017,56(12):6802-6808. doi: 10.1021/acs.inorgchem.6b03009
    [7]
    李禹红, 乔瑶雨, 李超, 等. ZIF-8@PDMAPMA复合材料的构筑及其性能研究[J]. 高分子学报, 2021, 52(9):1174-1183. doi: 10.11777/j.issn1000-3304.2021.21041

    LI Yuhong, QIAO Yaoyu, LI Chao, et al. Fabrication and properties of ZIF-8@PDMAPMA composite materials[J]. Acta Polymerica Sinica,2021,52(9):1174-1183(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21041
    [8]
    BEN T, LU C J, PEI C Y, et al. Polymer-supported and free-standing metal-organic framework membrane[J]. Chemistry—A European Journal,2012,18(33):10250-10253. doi: 10.1002/chem.201201574
    [9]
    FAN L L, XUE M, KANG Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis[J]. Journal of Materials Chemistry,2012,22(48):25272-25276. doi: 10.1039/c2jm35401b
    [10]
    AGUADO S, CANIVET J, FARRUSSENG D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications[J]. Chemical Communications,2010,46(42):7999-8001. doi: 10.1039/c0cc02045a
    [11]
    LEE H A, MA Y F, ZHOU F, et al. Material-independent surface chemistry beyond polydopamine coating[J]. Accounts of Chemical Research,2019,52(3):704-713. doi: 10.1021/acs.accounts.8b00583
    [12]
    SHANG L, YU H J, HUANG X, et al. Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts[J]. Advanced Materials,2016,28(8):1668-1674. doi: 10.1002/adma.201505045
    [13]
    CHEN L Y, XU Q. Metal-organic framework composites for catalysis[J]. Matter,2019,1(1):57-89. doi: 10.1016/j.matt.2019.05.018
    [14]
    CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J]. Advanced Materials,2018,30(30):1802011. doi: 10.1002/adma.201802011
    [15]
    HE N P, LI C, ZHAO X Z, et al. The lamellar MOFs@polymer networks hybrids fabricated in reversed microemulsion for efficient CO2 capture[J]. Polymers Advanced Technologies,2021,33(3):750-759.
    [16]
    TEPLENSKY M H, FANTHAM M, POUDEL C, et al. A highly porous metal-organic framework system to deliver payloads for gene knockdown[J]. Chem,2019,5(11):2926-2941. doi: 10.1016/j.chempr.2019.08.015
    [17]
    YANG S L, KARVE V V, JUSTIN A, et al. Enhancing MOF performance through the introduction of polymer guests[J]. Coordination Chemistry Reviews,2021,427:213525. doi: 10.1016/j.ccr.2020.213525
    [18]
    乔瑶雨, 张学辉, 赵晓竹, 等. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5):1181-1190.

    QIAO Yaoyu, ZHANG Xuehui, ZHAO Xiaozhu, et al. Preparation and application of graphene/metal-organic frameworks composites[J]. Progress in Chemistry,2022,34(5):1181-1190(in Chinese).
    [19]
    GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849
    [20]
    QIAO Y Y, HE N P, ZHANG X H, et al. In situ growth of MOF crystals to synthesize a graphene oxide/ZIF-7 gel with enhanced adsorption capacity for methylene blue[J]. New Journal of Chemistry,2022,46(29):14103-14111. doi: 10.1039/D2NJ02293A
    [21]
    TKACHEV S V, BUSLAEVA E Y, NAUMKIN A V, et al. Reduced graphene oxide[J]. Inorganic Materials,2012,48(8):796-802. doi: 10.1134/S0020168512080158
    [22]
    PARK S, AN J, JUNG I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters,2009,9(4):1593-1597. doi: 10.1021/nl803798y
    [23]
    KUMAR G, MASRAM D T. Sustainable synthesis of MOF-5@GO nanocomposites for efficient removal of rhodamine B from water[J]. ACS Omega,2021,6(14):9587-9599. doi: 10.1021/acsomega.1c00143
    [24]
    ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks/graphene-based materials: Preparations and applications[J]. Advanced Functional Materials,2018,28(47):1804950.
    [25]
    PARK J S, GOO N I, KIM D E. Mechanism of DNA adsorption and desorption on graphene oxide[J]. Langmuir,2014,30(42):12587-12595. doi: 10.1021/la503401d
    [26]
    CAI W X, LEE T, LEE M, et al. Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7)[J]. Journal of the American Chemical Society,2014,136(22):7961-7971. doi: 10.1021/ja5016298
    [27]
    XIAO T, LIU D X. Progress in the synthesis, properties and applications of ZIF-7 and its derivatives[J]. Materials Today Energy,2019,14:100357. doi: 10.1016/j.mtener.2019.100357
    [28]
    ZHENG J, CHENG C, FANG W J, et al. Surfactant-free synthesis of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue[J]. CrystEngComm,2014,16(19):3960-3964. doi: 10.1039/c3ce42648c
    [29]
    PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon,2011,49(2):563-572. doi: 10.1016/j.carbon.2010.09.059
    [30]
    LI S S, DAI J, YAN Q, et al. Effect of zeolitic imidazole framework (ZIFs) shells of core-shell microspheres on adsorption of Roselle red dye from water[J]. Inorganic Chemistry Communications,2018,97:113-118. doi: 10.1016/j.inoche.2018.09.015
    [31]
    MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [32]
    STOCK N, BISWAS S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews,2012,112(2):933-969. doi: 10.1021/cr200304e
    [33]
    KANG C H, LIN Y F, HUANG Y S, et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures[J]. Journal of Membrane Science,2013,438:105-111. doi: 10.1016/j.memsci.2013.03.028
    [34]
    YANG Q X, LU R, REN S S, et al. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water[J]. Chemical Engineering Journal,2018,348:202-211. doi: 10.1016/j.cej.2018.04.176
    [35]
    RATTANA, CHAIYAKUN S, WITIT-ANUN N, et al. Preparation and characterization of graphene oxide nanosheets[J]. Procedia Engineering,2012,32:759-764. doi: 10.1016/j.proeng.2012.02.009
    [36]
    STRANKOWSKI M, WŁODARCZYK D, PISZCZYK Ł, et al. Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies[J]. Journal of Spectroscopy,2016,2016:7520741. doi: 10.1155/2016/7520741
    [37]
    HUANG A S, LIU Q, WANG N Y, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity[J]. Journal of the American Chemical Society,2014,136(42):14686-14689. doi: 10.1021/ja5083602
    [38]
    SAHIN F, TOPUZ B, KALIPCILAR H. Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors[J]. Microporous and Mesoporous Materials,2018,261:259-267. doi: 10.1016/j.micromeso.2017.11.020
    [39]
    JIANG D N, CHEN M, WANG H, et al. The application of different typological and structural MOFs-based materials for the dyes adsorption[J]. Coordination Chemistry Reviews,2019,380:471-483. doi: 10.1016/j.ccr.2018.11.002
    [40]
    GUO H Y, JIAO T F, ZHANG Q R, et al. Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment[J]. Nanoscale Research Letters,2015,10(1):272. doi: 10.1186/s11671-015-0931-2
    [41]
    HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials,2015,283:329-339. doi: 10.1016/j.jhazmat.2014.09.046
    [42]
    JABBARI V, VELETA J M, ZAREI-CHALESHTORI M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J]. Chemical Engineering Journal,2016,304:774-783. doi: 10.1016/j.cej.2016.06.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (965) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return