Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
FANG Guodong, WANG Zhangwen, LI Sai, et al. Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004
Citation: FANG Guodong, WANG Zhangwen, LI Sai, et al. Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4518-4534. doi: 10.13801/j.cnki.fhclxb.20240418.004

Review of high-temperature oxidation properties for carbon fiber toughened ceramic matrix composites: Oxidation mechanisms, oxidation damage experiments and models

doi: 10.13801/j.cnki.fhclxb.20240418.004
Funds:  National Natural Science Foundation of China (12090034); Natural Science Foundation of Heilongjiang Province (YQ2021A004)
  • Received Date: 2024-02-22
  • Accepted Date: 2024-04-03
  • Rev Recd Date: 2024-03-20
  • Available Online: 2024-04-19
  • Publish Date: 2024-09-15
  • Carbon fiber toughened ceramic matrix composites inherit the excellent mechanical properties of carbon fibers and the high oxidation and corrosion resistance of ceramics, become the most promising candidate thermal protection materials for hypersonic vehicles. The high-temperature oxidation mechanisms and damage mechanical behaviors of carbon fiber toughened ceramic matrix composites in coupled service environments are important topics in the study of design, property characteristic and evaluation of thermal protection material. This provides a detailed discussion and summary of the research and analysis methods employed to characterize the oxidation damage of C/SiC and C/ZrB2-SiC composites in three aspects: high-temperature oxidation mechanisms, coupled failure experiment, and high-temperature oxidation model. The limitations and applicability of various research methods are analyzed and evaluated. In addition, the development trend of investigation of oxidation damage in carbon fiber toughened ceramic matrix composites is provided. It lays a theoretical foundation of thermal/mechanical response analysis and performance evaluation of carbon fiber toughened ceramic matrix composites in the thermal/mechanical/oxygen environment.

     

  • loading
  • [1]
    UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. doi: 10.1016/j.actaastro.2020.06.047
    [2]
    Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001
    [3]
    关春龙, 李壵, 赫晓东. 可重复使用热防护系统防热结构及材料的研究现状[J]. 宇航材料工艺, 2003, 33(6): 7-11.

    GUAN Chunlong, LI Yao, HE Xiaodong. Research status of structures and materials for reusable TPS[J]. Aerospace Materials & Technology, 2003, 33(6): 7-11(in Chinese).
    [4]
    包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555.

    BAO Weimin. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555(in Chinese).
    [5]
    国义军, 石卫波, 曾磊, 等. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 12.

    GUO Yijun, SHI Weibo, ZENG Lei, et al. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: China Science Publishing & Media Ltd., 2019: 12(in Chinese).
    [6]
    Shvydyuk K O, Nunes-Pereira J, Rodrigues F F, et al. Review of ceramic composites in aeronautics and aerospace: A multifunctional approach for TPS, TBC and DBD applications[J]. Ceramics, 2023, 6(1): 195-230. doi: 10.3390/ceramics6010012
    [7]
    Wei F, Zhang Y, Lei L I U, et al. High-frequent pulsing ablation of C/C-SiC-ZrB2-ZrC composite for different cycles to 2000 times in plasma[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(2): 553-562. doi: 10.1016/S1003-6326(22)66127-2
    [8]
    Miller-Oana M, Corral E L. High-temperature isothermal oxidation of ultra-high temperature ceramics using thermal gravimetric analysis[J]. Journal of the American Ceramic Society, 2016, 99(2): 619-626. doi: 10.1111/jace.14001
    [9]
    Grigoriev O N, Stepanenko A V, Vinokurov V B, et al. ZrB2–SiC ceramics: Residual stresses and mechanical properties[J]. Journal of the European Ceramic Society, 2021, 41(9): 4720-4727. doi: 10.1016/j.jeurceramsoc.2021.02.053
    [10]
    Tiwari M, Singh V K. Influence of SiC content to control morphology of in-situ synthesized ZrB2–SiC composite through single-step reduction process[J]. Vacuum, 2022, 203: 111251. doi: 10.1016/j.vacuum.2022.111251
    [11]
    Levine S R, Opila E J, Halbig M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14-15): 2757-2767. doi: 10.1016/S0955-2219(02)00140-1
    [12]
    Cho Y J, Lu K. High temperature oxidation behaviors of bulk SiC with low partial pressures of air and water vapor in argon[J]. Corrosion Science, 2020, 174: 108795. doi: 10.1016/j.corsci.2020.108795
    [13]
    Deal B E, Grove A S. General relationship for the thermal oxidation of silicon[J]. Journal of applied physics, 1965, 36(12): 3770-3778. doi: 10.1063/1.1713945
    [14]
    Raj R. Chemical potential-based analysis for the oxidation kinetics of Si and SiC single crystals[J]. Journal of the American Ceramic Society, 2013, 96(9): 2926-2934. doi: 10.1111/jace.12464
    [15]
    Fahrenholtz W G. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 2007, 90(1): 143-148. doi: 10.1111/j.1551-2916.2006.01329.x
    [16]
    Parthasarathy T A, Rapp R A, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Materialia, 2007, 55(17): 5999-6010. doi: 10.1016/j.actamat.2007.07.027
    [17]
    Parthasarathy T A, Rapp R A, Opeka M, et al. Modeling oxidation kinetics of SiC-containing refractory diborides[J]. Journal of the American Ceramic Society, 2012, 95(1): 338-349. doi: 10.1111/j.1551-2916.2011.04927.x
    [18]
    Ma Y, Yao X, Hao W, et al. Oxidation mechanism of ZrB2/SiC ceramics based on phase-field model[J]. Composites science and technology, 2012, 72(10): 1196-1202. doi: 10.1016/j.compscitech.2012.04.003
    [19]
    Chen X, Sun Z, Chen Z, et al. ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2[J]. Computational Materials Science, 2021, 191: 110341. doi: 10.1016/j.commatsci.2021.110341
    [20]
    Zhang P, Zhang Y, Chen G, et al. High-temperature oxidation behavior of CVD-SiC ceramic coating in wet oxygen and structural evolution of oxidation product: Experiment and first-principle calculations[J]. Applied Surface Science, 2021, 556: 149808. doi: 10.1016/j.apsusc.2021.149808
    [21]
    Zumpicchiat G, Pascal S, Tupin M, et al. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress[J]. Corrosion Science, 2015, 100: 209-221. doi: 10.1016/j.corsci.2015.07.024
    [22]
    Dong X, Fang X, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature[J]. Journal of the American Ceramic Society, 2013, 96(1): 44-46. doi: 10.1111/jace.12105
    [23]
    Loeffel K, Anand L. A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction[J]. International Journal of Plasticity, 2011, 27(9): 1409-1431. doi: 10.1016/j.ijplas.2011.04.001
    [24]
    Chen L, Yueming L. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating[J]. Journal of Applied Physics, 2018, 123(21): 215305. doi: 10.1063/1.5019848
    [25]
    Zhou Z, Peng X, Wei Z. A thermo-chemo-mechanical model for the oxidation of zirconium diboride[J]. Journal of the American Ceramic Society, 2015, 98(2): 629-636. doi: 10.1111/jace.13333
    [26]
    Zhao Y, Chen Y, He C, et al. A damage-induced short-circuit diffusion model applied to the oxidation calculation of ceramic matrix composites (CMCs)[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105621. doi: 10.1016/j.compositesa.2019.105621
    [27]
    Wang H, Shen S. A chemomechanical coupling model for oxidation and stress evolution in ZrB2-SiC[J]. Journal of Materials Research, 2017, 32(7): 1267-1278. doi: 10.1557/jmr.2016.489
    [28]
    Rulko T A, Pickard D N, Radovitzky R. Fully-coupled multiphysics simulations of the thermo-mechanical oxidation of ceramics for spacecraft heat shields[C]//AIAA SCITECH 2024 Forum. 2024: 0029.
    [29]
    Bianco G, Nisar A, Zhang C, et al. Predicting oxidation damage in ultra high-temperature borides: A machine learning approach[J]. Ceramics International, 2022, 48(20): 29763-29769. doi: 10.1016/j.ceramint.2022.06.236
    [30]
    Bianco G, Nisar A, Zhang C, et al. Predicting oxidation damage of ultra high-temperature carbide ceramics in extreme environments using machine learning[J]. Ceramics International, 2023, 49(12): 19974-19981. doi: 10.1016/j.ceramint.2023.03.119
    [31]
    Halbig M C, McGuffin-Cawley J D, Eckel A J, et al. Oxidation kinetics and stress effects for the oxidation of continuous carbon fibers within a microcracked C/SiC ceramic matrix composite[J]. Journal of the American ceramic society, 2008, 91(2): 519-526. doi: 10.1111/j.1551-2916.2007.02170.x
    [32]
    Opila E J, Serra J L. Oxidation of carbon fiber-reinforced silicon carbide matrix composites at reduced oxygen partial pressures[J]. Journal of the American Ceramic Society, 2011, 94(7): 2185-2192. doi: 10.1111/j.1551-2916.2010.04376.x
    [33]
    Jacobson N S, Curry D M. Oxidation microstructure studies of reinforced carbon/carbon[J]. Carbon, 2006, 44(7): 1142-1150. doi: 10.1016/j.carbon.2005.11.013
    [34]
    Vinci A, Zoli L, Sciti D. Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2/SiC composites at 1500 and 1650° C in air[J]. Journal of the European Ceramic Society, 2018, 38(11): 3767-3776. doi: 10.1016/j.jeurceramsoc.2018.04.064
    [35]
    Vinci A, Zoli L, Landi E, et al. Oxidation behaviour of a continuous carbon fibre reinforced ZrB2-SiC composite[J]. Corrosion Science, 2017, 123: 129-138. doi: 10.1016/j.corsci.2017.04.012
    [36]
    Zhang D, Hu P, Dong S, et al. Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration-assisted slurry impregnation combined with low-temperature hot pressing[J]. Corrosion Science, 2019, 161: 108181. doi: 10.1016/j.corsci.2019.108181
    [37]
    Zoli L, Sciti D. Efficacy of a ZrB2-SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials[J]. Materials & Design, 2017, 113: 207-213.
    [38]
    Vinci A, Reimer T, Zoli L, et al. Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200℃[J]. Corrosion Science, 2021, 184: 109377. doi: 10.1016/j.corsci.2021.109377
    [39]
    Zhao Z, Li K, Li W. Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions[J]. Corrosion Science, 2021, 189: 109598. doi: 10.1016/j.corsci.2021.109598
    [40]
    Kou S, Ma J, Ma Y, et al. Microstructure and flexural strength of C/HfC-ZrC-SiC composites prepared by reactive melt infiltration method[J]. Journal of the European Ceramic Society, 2023, 43(5): 1864-1873. doi: 10.1016/j.jeurceramsoc.2022.12.015
    [41]
    Zhang Y, Zhang L, Cheng L, et al. Tensile behavior and microstructural evolution of a carbon/silicon carbide composite in simulated re-entry environments[J]. Materials Science and Engineering: A, 2008, 473(1-2): 111-118. doi: 10.1016/j.msea.2007.05.015
    [42]
    Zhang Y, Zhang L, Liu Y, et al. Oxidation effects on in-plane and interlaminar shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites[J]. Carbon, 2016, 98: 144-156. doi: 10.1016/j.carbon.2015.10.091
    [43]
    Cheng T, Wang X, Zhang R, et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300°C[J]. Journal of the European Ceramic Society, 2020, 40(3): 630-635. doi: 10.1016/j.jeurceramsoc.2019.10.030
    [44]
    Cheng T. Insights into fracture mechanisms and strength behaviors of two-dimensional carbon fiber reinforced silicon carbide composites at elevated temperatures[J]. Journal of the European Ceramic Society, 2022, 42(1): 71-86. doi: 10.1016/j.jeurceramsoc.2021.09.028
    [45]
    Luan X, Cheng L, Zhang J, et al. Effects of temperature and stress on the oxidation behavior of a 3D C/SiC composite in a combustion wind tunnel[J]. Composites Science and Technology, 2010, 70(4): 678-684. doi: 10.1016/j.compscitech.2009.12.025
    [46]
    Morscher G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology, 2004, 64(9): 1311-1319. doi: 10.1016/j.compscitech.2003.10.022
    [47]
    Sevener K M, Tracy J M, Zhe C, et al. Crack opening behavior in ceramic matrix composites[J]. Journal of the American Ceramic Society, 2017, 100(10).
    [48]
    Feng Y, Feng Z, Li S, et al. Micro-CT characterization on porosity structure of 3D Cf/SiCm composite[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1645-1650. doi: 10.1016/j.compositesa.2011.07.015
    [49]
    Chateau C, Gélébart L, Bornert M, et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924. doi: 10.1016/j.compscitech.2011.02.008
    [50]
    Goulmy J P, Caty O, Rebillat F. Characterization of the oxidation of C/C/SiC composites by Xray micro-tomography[J]. Journal of the European Ceramic Society, 2020, 40(15).
    [51]
    Ai S, Song W, Chen Y. Stress field and damage evolution in C/SiC woven composites: Image-based finite element analysis and in situ X-ray computed tomography tests[J]. Journal of the European Ceramic Society, 2021, 41(4): 2323-2334. doi: 10.1016/j.jeurceramsoc.2020.12.026
    [52]
    Mazars V, Caty O, Couégnat G, et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests[J]. Acta Materialia, 2017, 140: 130-139. doi: 10.1016/j.actamat.2017.08.034
    [53]
    Bale H A, Haboub A, MacDowell A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600℃[J]. Nature materials, 2013, 12(1): 40-46. doi: 10.1038/nmat3497
    [54]
    Goulmy J P, Caty O, Rebillat F. Characterization of the oxidation of C/C/SiC composites by Xray micro-tomography[J]. Journal of the European Ceramic Society, 2020, 40(15).
    [55]
    Cheng T, Zhang R, Pei Y, et al. Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 1800℃ in air[J]. Extreme Mechanics Letters, 2019, 31: 100546. doi: 10.1016/j.eml.2019.100546
    [56]
    Leiser D B, Churchward R, Katvala V, et al. Advanced porous coating for low-density ceramic insulation materials[J]. Journal of the American Ceramic Society, 1989, 72(6): 1003-1010. doi: 10.1111/j.1151-2916.1989.tb06259.x
    [57]
    Grosch D, Bertrand F. Thermal protection system (TPS) impact experiments[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th. 2006: 1780.
    [58]
    Xue L Z, Li K Z, Jia Y, et al. Effects of hypervelocity impact on ablation behavior of SiC coated C/C composites[J]. Materials & Design, 2016, 108: 151-156.
    [59]
    Yao L, Lyu P, Bai G, et al. Influence of low velocity impact on oxidation performance of SiC coated C/SiC composites[J]. Ceramics International, 2019, 45(16): 20470-20477. doi: 10.1016/j.ceramint.2019.07.025
    [60]
    Sullivan R M. A model for the oxidation of carbon silicon carbide composite structures[J]. Carbon, 2005, 43(2): 275-285. doi: 10.1016/j.carbon.2004.09.010
    [61]
    Halbig M C. Stressed oxidation and modeling of C/SiC in oxidizing environments[C]//25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Hoboken, NJ: John Wiley & Sons, Inc., 2001: 625-632.
    [62]
    Lamouroux F, Naslain R, Jouin J M. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II, theoretical approach[J]. Journal of the American ceramic society, 1994, 77(8): 2058-2068. doi: 10.1111/j.1151-2916.1994.tb07097.x
    [63]
    Xu Y, Zhang P, Lu H, et al. Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800℃: Microstructure and mechanical behavior[J]. Journal of the European Ceramic Society, 2015, 35(13): 3401-3409. doi: 10.1016/j.jeurceramsoc.2015.05.039
    [64]
    Sun Z, Niu X, Wang Z, et al. Verification and prediction of residual strength of C/SiC composites under non-stress oxidation[J]. Journal of Materials Science, 2014, 49(23): 8192-8203. doi: 10.1007/s10853-014-8528-1
    [65]
    Casas L, Martinez-Esnaola J M. Modelling the effect of oxidation on the creep behaviour of fibre-reinforced ceramic matrix composites[J]. Acta materialia, 2003, 51(13): 3745-3757. doi: 10.1016/S1359-6454(03)00189-7
    [66]
    Longbiao L. Modeling matrix cracking of fiber-reinforced ceramic-matrix composites under oxidation environment at elevated temperature[J]. Theoretical and Applied Fracture Mechanics, 2017, 87: 110-119. doi: 10.1016/j.tafmec.2016.11.003
    [67]
    Deng Y, Li W, Ma J, et al. Thermal-mechanical-oxidation coupled first matrix cracking stress model for fiber reinforced ceramic-matrix composites[J]. Journal of the European Ceramic Society, 2021, 41(7): 4016-4024. doi: 10.1016/j.jeurceramsoc.2021.02.033
    [68]
    Lee S, Sundararaghavan V. Multi-scale modeling of moving interface problems with flux and field jumps: Application to oxidative degradation of ceramic matrix composites[J]. International journal for numerical methods in engineering, 2011, 85(6): 784-804. doi: 10.1002/nme.2996
    [69]
    Mei H, Cheng L, Zhang L, et al. Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures[J]. Carbon, 2007, 45(11): 2195-2204. doi: 10.1016/j.carbon.2007.06.051
    [70]
    Luan X, Cheng L, Xie C. Stressed oxidation life predication of 3D C/SiC composites in a combustion wind tunnel[J]. Composites Science and Technology, 2013, 88: 178-183. doi: 10.1016/j.compscitech.2013.09.001
    [71]
    Zhao Y, Chen Y, He C, et al. A damage-induced short-circuit diffusion model applied to the oxidation calculation of ceramic matrix composites (CMCs)[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105621. doi: 10.1016/j.compositesa.2019.105621
    [72]
    Chen X, Sun Z, Li H, et al. Modeling the effect of oxidation on the residual tensile strength of SiC/C/SiC mini composites in stressed oxidizing environments[J]. Journal of Materials Science, 2020, 55(8): 3388-3407. doi: 10.1007/s10853-019-04255-4
    [73]
    Santhosh U, Ahmad J, Ojard G, et al. A synergistic model of stress and oxidation induced damage and failure in silicon carbide-based ceramic matrix composites[J]. Journal of the American Ceramic Society, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (262) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return