Volume 41 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
DING Yi, FENG Shu, MEI Zekai, et al. Supersaturated wood-based biomass porous materials for oil/water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003
Citation: DING Yi, FENG Shu, MEI Zekai, et al. Supersaturated wood-based biomass porous materials for oil/water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5124-5136. doi: 10.13801/j.cnki.fhclxb.20240418.003

Supersaturated wood-based biomass porous materials for oil/water separation

doi: 10.13801/j.cnki.fhclxb.20240418.003
Funds:  Foundation of State Key Laboratory of Biobased Material and Green Papermaking (GZKF202220); 2022 Training Program of Innovation and Entrepreneurship for Undergraduates (202210298006Z)
  • Received Date: 2024-01-30
  • Accepted Date: 2024-04-04
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-04-19
  • Publish Date: 2024-10-15
  • The efficient separation of oil and water from kitchen waste and industrial wastewater remains challenging. Traditional oil-water separation techniques mainly include gravity settling, centrifugation, adsorption, flotation and electrochemistry, which suffer from low separation efficiency and incomplete separation. How to realize oil-water separation with high efficiency and low cost has become a hot spot of current research. Wood is a sustainable biomaterial and has a multilevel pore structure and abundant hydroxyl functional groups, and its derivatives have super-wetting properties, so it is expected to be a new type of oil-water separation material. By optimizing the internal cell pore size of wood and modifying its superhydrophobic or superhydrophobic surface wettability, the physicochemical filtration and adsorption of wood-based composites on oil-water mixed emulsions can be promoted, and the effective removal of oil from wastewater can be realized. In this paper, the characteristics and hazards of oil-water mixtures and oily wastewater are summarized, and the construction strategies of wood-based porous filtration membranes and adsorbent materials with super-wetting properties (superhydrophobic/underwater superoleophobicity, superhydrophobic/superoleophilic) for the separation of oil-containing wastewater are reviewed systematically, and the progress of the research on wood-based biomass porous materials with super-wetting properties in the field of oil-water separation in recent years is summarized and the problems and potential future research directions of such materials are outlooked.

     

  • loading
  • [1]
    姚团威. 含油废水性质及其处理技术[J]. 化工设计通讯, 2018, 44(12): 214.

    YAO Tuanwei. Properties of oily wastewater and its treatment technology[J]. Chemical Engineering Design Communications, 2018, 44(12): 214(in Chinese).
    [2]
    KIM S, KIM K, JUN G, et al. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions[J]. ACS Nano, 2020, 14(12): 17233-17240. doi: 10.1021/acsnano.0c07206
    [3]
    FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15): 2046-2048. doi: 10.1002/ange.200353381
    [4]
    BI H, XIE X, YIN K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials, 2012, 22(21): 4421-4425.
    [5]
    SOBSEY M D, STAUBER C E, CASANOVA L M, et al. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world[J]. Environmental Science & Technology, 2008, 42(12): 4261-4267.
    [6]
    DU X, SHI L, PANG J, et al. Fabrication of superwetting and antimicrobial wood-based mesoporous composite decorated with silver nanoparticles for purifying the polluted-water with oils, dyes and bacteria[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107152. doi: 10.1016/j.jece.2022.107152
    [7]
    金枝, 李伯涛, 尹江苹, 等. 木材孔隙连通性评价研究进展[J]. 林业科学, 2022, 58(5): 177-186.

    JIN Zhi, LI Botao, YIN Jiangping, et al. Research progress for the evaluation of wood pore connectivity[J]. Scientia Silvae Sinicae, 2022, 58(5): 177-186(in Chinese).
    [8]
    JIANG Y, JIANG L, PANG Y, et al. Surface migration of fluorinated-siloxane copolymer with unusual liquid crystal behavior for highly efficient oil/water separation[J]. ACS Applied Polymer Materials, 2020, 2(8): 3612-3620. doi: 10.1021/acsapm.0c00615
    [9]
    ZHU Z, WANG W, QI D, et al. Calcinable polymer membrane with revivability for efficient oily-water remediation[J]. Advanced Materials, 2018, 30(30): 1801870. doi: 10.1002/adma.201801870
    [10]
    ZHANG W, LIU N, CAO Y, et al. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation[J]. Advanced Materials Interfaces, 2017, 4(10): 1600029. doi: 10.1002/admi.201700029
    [11]
    肖莹. 铁路场站含油废水调查及处理工艺研究[D]. 西安: 长安大学, 2010.

    XIAO Ying. Actualities investigation and experimental study on treatment for railway oily wastewater[D]. Xi'an: Chang'an University, 2010(in Chinese).
    [12]
    黄俊. 聚丙烯腈基复合纤维膜的制备及其对油水分离的应用研究[D]. 长春: 吉林大学, 2022.

    HUANG Jun. The preparation of polyacrylonitrile-based composite fiber membrane and its application in oil-water separation[D]. Changchun: Jilin University, 2022(in Chinese).
    [13]
    陈方明. 餐厨废弃物油脂分离技术[D]. 南京: 南京理工大学, 2015.

    CHEN Fangming. Kitchen waste grease separation technology[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [14]
    LUO N, WANG M, LI H, et al. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products[J]. ACS Catalysis, 2017, 7(7): 4571-4580. doi: 10.1021/acscatal.7b01043
    [15]
    ANSELL M P. Wood microstructure—A cellular composite[M]//Wood Composites. Elsevier, 2015: 3-26.
    [16]
    刘淑玲, 郭平平, 申艳梅, 等. 白桦树干导管特征的轴向和径向变化[J]. 辽宁林业科技, 2014(4): 6-8, 62.

    LIU Shuling, GUO Pingping, SHEN Yanmei, et al. Axial and radial changes of vessel in Betula platyphylla's stem[J]. Liaoning Forestry Science and Technology, 2014(4): 6-8, 62(in Chinese).
    [17]
    张秀梅. 木质纳米纤维素可视化建模与分子动力学研究[D]. 哈尔滨: 东北林业大学, 2013.

    ZHANG Xiumei. Visualization modeling and molecular dynamics simulations of wood nano cellulose[D]. Harbin: Northeast Forestry University, 2013(in Chinese).
    [18]
    GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure[J]. Journal of the European Ceramic Society, 1998, 18(14): 1961-1973. doi: 10.1016/S0955-2219(98)00156-3
    [19]
    GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties[J]. Journal of the European Ceramic Society, 1998, 18(14): 1975-1983. doi: 10.1016/S0955-2219(98)00155-1
    [20]
    刘兆婷. 木材结构分级多孔氧化物制备、表征及其功能特性研究[D]. 上海: 上海交通大学, 2008.

    LIU Zhaoting. Synthesis, characterization and properties of hierarchical porous oxides derived from wood templates[D]. Shanghai: Shanghai Jiao Tong University, 2008(in Chinese).
    [21]
    姜晓峰, 于维钊, 王继乾. 油水分离用天然材料表面化学研究进展[J]. 化学通报, 2021, 84(4): 290-304, 321.

    JIANG Xiaofeng, YU Weizhao, WANG Jiqian. The surface chemistry of natural materials for oil-water separation chemistry[J]. Chemistry, 2021, 84(4): 290-304, 321(in Chinese).
    [22]
    Pharmaceutical compounding and dispensing[J]. Journal of the American Medical Association, 1950, 143(9): 853-853.
    [23]
    HASSEGAWA M, VAN BRUSSELEN J, CRAMM M, et al. Wood-based products in the circular bioeconomy: Status and opportunities towards environmental sustainability[J]. Land, 2022, 11(12): 2131. doi: 10.3390/land11122131
    [24]
    BOVEA M D, VIDAL R. Materials selection for sustainable product design: A case study of wood based furniture eco-design[J]. Materials & Design, 2004, 25(2): 111-116.
    [25]
    JIN K, QIN Z, BUEHLER M J. Molecular deformation mechanisms of the wood cell wall material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198-206.
    [26]
    XU Y, WU T, CUI Z, et al. In situ growth of COFs within wood microchannels for wastewater treatment and oil-water separation[J]. Separation and Purification Technology, 2022, 303: 122275. doi: 10.1016/j.seppur.2022.122275
    [27]
    WU J, CUI Z, YU Y, et al. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions[J]. Journal of Hazardous Materials, 2023, 441: 129900. doi: 10.1016/j.jhazmat.2022.129900
    [28]
    FANG Y, JING C, LI G, et al. Wood-derived systems for sustainable oil/water separation[J]. Advanced Sustainable Systems, 2021, 5(7): 2100039.
    [29]
    VIDIELLA DEL BLANCO M, FISCHER E J, CABANCE E. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21): 1700584. doi: 10.1002/admi.201700584
    [30]
    CHENG Z, GUAN H, MENG J, et al. Dual-functional porous wood filter for simultaneous oil/water separation and organic pollutant removal[J]. ACS Omega, 2020, 5(23): 14096-14103. doi: 10.1021/acsomega.0c01606
    [31]
    BAI X, SHEN Y, TIAN H, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation[J]. Separation and Purification Technology, 2019, 210: 402-408. doi: 10.1016/j.seppur.2018.08.010
    [32]
    ZHOU Y, QU K, LUO X, et al. Different machined wood slices for separation of both oil/water mixtures and emulsions[J]. Journal of Coatings Technology and Research, 2021, 18: 1431-1443. doi: 10.1007/s11998-021-00511-y
    [33]
    CAI Y, YU Y, WU J, et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions[J]. EcoMat, 2022, 4(6): e12255.
    [34]
    CHEN Z, SU X, WU W, et al. Superhydrophobic PDMS@ TiO2 wood for photocatalytic degradation and rapid oil-water separation[J]. Surface and Coatings Technology, 2022, 434: 128182. doi: 10.1016/j.surfcoat.2022.128182
    [35]
    MA T, LI L, MEI C, et al. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation[J]. Journal of Materials Science, 2021, 56: 5624-5636. doi: 10.1007/s10853-020-05615-1
    [36]
    CHE W, ZHOU L, ZHOU Q, et al. Flexible Janus wood membrane with asymmetric wettability for high-efficient switchable oil/water emulsion separation[J]. Journal of Colloid and Interface Science, 2023, 629: 719-727. doi: 10.1016/j.jcis.2022.09.109
    [37]
    戴国琛, 张泽天, 高文伟, 等. 油水乳液分离吸附材料的分离原理、构建方法和分离性能[J]. 化工进展, 2019, 38(4): 1785-1793.

    DAI Guochen, ZHANG Zetian, GAO Wenwei, et al. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1785-1793(in Chinese).
    [38]
    管浩, 戴鑫建, 王鑫, 等. 木基多孔油水分离材料研究进展[J]. 木材科学与技术, 2022, 36(1): 1-8.

    GUAN Hao, DAI Xinjian, WANG Xin, et al. Research review of wood-based porous materials for oil/water separation[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 1-8(in Chinese).
    [39]
    ZHOU Y B, QU K G, LUO X Q, et al. Different machined wood slices for separation of both oil/water mixtures and emulsions[J]. Journal of Coatings Technology and Research, 2021, 18: 1431-1443. doi: 10.1007/s11998-021-00511-y
    [40]
    CAI Y, YU Y, WU J, et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions[J]. EcoMat, 2022, 4(6): e12255. doi: 10.1002/eom2.12255
    [41]
    FANG Y, JING C, LI G, et al. Wood-derived systems for sustainable oil/water separation[J]. Advanced Sustainable Systems, 2021, 5(7): 2100039.
    [42]
    WU M B, HUANG S, LIU C, et al. Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil[J]. Journal of Materials Chemistry A, 2020, 8(22): 11354-11361. doi: 10.1039/D0TA03844J
    [43]
    GUAN H, CHENG Z, WANG X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10365-10373. doi: 10.1021/acsnano.8b05763
    [44]
    CHENG R, YANG Y, LIU Q, et al. In-situ growth strategy to fabricate superhydrophobic wood by Na3(Cu2(CO3)3OH)∙4H2O for oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130338. doi: 10.1016/j.colsurfa.2022.130338
    [45]
    CHEN Z, SU X, WU W, et al. Superhydrophobic PDMS@ GSH wood with Joule heat and photothermal effect for viscous crude oil removal[J]. Carbon, 2023, 201: 577-586. doi: 10.1016/j.carbon.2022.09.014
    [46]
    WANG P L, MA C, YUAN Q, et al. Novel Ti3C2T x MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect[J]. Journal of Colloid and Interface Science, 2022, 606: 971-982. doi: 10.1016/j.jcis.2021.08.092
    [47]
    FU Q, ANSARI F, ZHOU Q, et al. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures[J]. ACS Nano, 2018, 12(3): 2222-2230. doi: 10.1021/acsnano.8b00005
    [48]
    ZHAO M, TAO Y, WANG J, et al. Facile preparation of superhydrophobic porous wood for continuous oil-water separation[J]. Journal of Water Process Engineering, 2020, 36: 101279.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (156) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return