Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
GU Yanling, CHEN Yang, AN Jinhua, et al. Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3047-3059. doi: 10.13801/j.cnki.fhclxb.20220617.001
Citation: GU Yanling, CHEN Yang, AN Jinhua, et al. Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3047-3059. doi: 10.13801/j.cnki.fhclxb.20220617.001

Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites

doi: 10.13801/j.cnki.fhclxb.20220617.001
Funds:  National Natural Science Foundation of China (52171052; U20B2009); Chongqing Natural Science Foundation (cstc2020 jcyj-msxmX0587)
  • Received Date: 2022-05-17
  • Accepted Date: 2022-06-04
  • Rev Recd Date: 2022-06-02
  • Available Online: 2022-06-20
  • Publish Date: 2023-05-15
  • The emergence of new high-entropy alloys has broadened the selection range of metal matrix compo-sites. In this study, carbide ceramic particles doped in Fe49.5Mn30Co10Cr10X0.5 (X=B4C, ZrC and TiC) high-entropy alloy composites are prepared by using arc melting technology, and the effects of three carbide ceramic particles on the microstructure and mechanical properties of composite materials were systematically studied. The results show that the doped carbide ceramic particles can refine the matrix grains, stabilize the fcc phase, and inhibit the formation of the hcp phase. Among them, B4C ceramic particles have the most significant effect on refining grains and stabilizing fcc phase. The mechanical properties of the samples doped with ZrC and B4C ceramic particles are lower than the matrix samples, which is attributed to the poor bonding between the ceramic particles and the matrix, and the appearing void defects at the interface. But TiC doped sample, the strengthening and toughening effect is significant, which is attributed to good interface bonding, fine grain strengthening, Orowan strengthening, and load bearing strengthening.

     

  • loading
  • [1]
    FANG Y, WANG Y Q, ZHANG P, et al. Research on chip formation mechanism and surface morphology of particle-reinforced metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology,2021,117:3793-3804. doi: 10.1007/s00170-021-07921-7
    [2]
    SHUVHO M B A, CHOWDHURY M A, KCHAOU M, et al. Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles[J]. Chemical Data Collections,2020,28:100442. doi: 10.1016/j.cdc.2020.100442
    [3]
    PARIYAR A, PERUGU C S, DASH K, et al. Microstructure and mechanical behavior of high toughness Al-based metal matrix composite reinforced with in-situ formed nickel aluminides[J]. Materials Characterization,2021,171:110766. doi: 10.1016/j.matchar.2020.110766
    [4]
    徐圣航, 周承商, 刘咏. 金属-金属层状结构复合材料研究进展[J]. 中国有色金属学报, 2019, 29(6):1125-1142. doi: 10.19476/j.ysxb.1004.0609.2019.06.01

    XU Shenghang, ZHOU Chengshang, LIU Yong. Research progress in metal-metal laminated structural composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(6):1125-1142(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.06.01
    [5]
    康蒙, 程小全, 张纪奎, 等. 高体积分数SiCP/Al复合材料的拉伸、压缩与弯曲特性[J]. 复合材料学报, 2008, 25(3):127-131. doi: 10.3321/j.issn:1000-3851.2008.03.022

    KANG Meng, CHENG Xiaoquan, ZHANG Jikui, et al. Tensile compressive and flexible properties of high volume fraction SiCP/Al composites[J]. Acta Materiae Compositae Sinica,2008,25(3):127-131(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.022
    [6]
    倪嘉, 柴皓, 史昆, 等. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(S2):369-373.

    NI Jia, CHAI Hao, SHI Kun, et al. Research progress of titanium matrix composites reinforced by particle[J]. Materials Reports,2019,33(S2):369-373(in Chinese).
    [7]
    袁秋红, 周国华, 廖琳, 等. 不同纳米碳材料增强镁基复合材料的显微组织与力学性能[J]. 中国有色金属学报, 2021, 31(1):30-41. doi: 10.11817/j.ysxb.1004.0609.2021-36552

    YUAN Qiuhong, ZHOU Guohua, LIAO Lin, et al. Microstructures and mechanical properties of Mg-based composites reinforced with different nano-carbon materials[J]. Transactions of Nonferrous Metals Society of China,2021,31(1):30-41(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2021-36552
    [8]
    曹利, 王传英, 邵贝羚, 等. SiCp/Al 复合材料的组织与断口分析[J]. 复合材料学报, 1992, 9(3):19-22.

    CAO Li, WANG Chuanying, SHAO Beiling, et al. Analysis of microstructure and fracture in SiCP/Al composites[J]. Acta Materiae Compositae Sinica,1992,9(3):19-22(in Chinese).
    [9]
    顾冬冬, 沈以赴. 颗粒增强铜基复合材料的选区激光烧结制备[J]. 复合材料学报, 2007, 24(1):53-59. doi: 10.3321/j.issn:1000-3851.2007.01.009

    GU Dongdong, SHEN Yifu. Fabrication of particle reinforced copper matrix composites by selective laser sintering[J]. Acta Materiae Compositae Sinica,2007,24(1):53-59(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.009
    [10]
    YE Y F, WANG Q, LU J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today,2016,19(6):349-362. doi: 10.1016/j.mattod.2015.11.026
    [11]
    MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia,2017,122:448-511.
    [12]
    GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science,2014,345(6201):1153-1158. doi: 10.1126/science.1254581
    [13]
    SU J, RAABE D, LI Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. Acta Materialia,2019,163:40-54.
    [14]
    马国彬, 谭建波. 颗粒增强金属基复合材料的研究现状[J]. 铸造设备与工艺, 2019(2):50-54. doi: 10.16666/j.cnki.issn1004-6178.2019.02.016

    MA Guobing, TAN Jianbo. Research status of particle reinforced metal matrix composites[J]. Foundry Equipment and Technology,2019(2):50-54(in Chinese). doi: 10.16666/j.cnki.issn1004-6178.2019.02.016
    [15]
    张洁, 程晓农, 罗锐, 等. 碳化硼对高熵合金结构及性能的影响[J]. 金属热处理, 2020, 45(6):173-177. doi: 10.13251/j.issn.0254-6051.2020.06.036

    ZHANG Jie, CHENG Xiaonong, LUO Rui, et al. Effect of B4C on microstructure and properties of high-entropy alloy[J]. Heat Treatment of Metal,2020,45(6):173-177(in Chinese). doi: 10.13251/j.issn.0254-6051.2020.06.036
    [16]
    ROGAL Ł, KALITA D, LITYNSKA-DOBRZYNSKA L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics,2017,86:104-109. doi: 10.1016/j.intermet.2017.03.019
    [17]
    ROGAL Ł, KALITA D, TARASEK A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy[J]. Journal of Alloys and Compounds,2017,708:344-352. doi: 10.1016/j.jallcom.2017.02.274
    [18]
    高银, 刘涛, 韩勇, 等. TiC对 W-7 Cu 复合材料组织与性能的影响[J]. 中国有色金属学报, 2020, 30(6):1281-1288. doi: 10.11817/j.ysxb.1004.0609.2020-36394

    GAO Yin, LIU Tao, HAN Yong, et al. The impact of TiC on microstructure and properties of W-7 Cu composites[J]. Transactions of Nonferrous Metals Society of China,2020,30(6):1281-1288(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-36394
    [19]
    WU H, HUANG S R, ZHAO C M, et al. Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles[J]. Intermetallics,2020,127:106983. doi: 10.1016/j.intermet.2020.106983
    [20]
    PENG Y, ZHANG W, LI T, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology,2020,385:125326. doi: 10.1016/j.surfcoat.2019.125326
    [21]
    ZHANG J F, JIA T, QIU H, et al. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. Journal of Materials Science & Technology,2020,42:122-129.
    [22]
    权高峰, 柴东朗, 宋余九, 等. 增强体种类及含量对金属基复合材料力学性能的影响[J]. 复合材料学报, 1999, 16(2):62-66. doi: 10.3321/j.issn:1000-3851.1999.02.012

    QUAN Gaofeng, CHAI Donglang, SONG Yujiu, et al. Effect of category and content of reinforcements on mechanical properties of metal matrix composites[J]. Acta Materiae Compositae Sinica,1999,16(2):62-66(in Chinese). doi: 10.3321/j.issn:1000-3851.1999.02.012
    [23]
    刘怡, 涂坚, 杨威华, 等. 形变及退火工艺对 Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12):1569-1580.

    LIU Yi, TU Jian, YANG Weihua, et al. Effect of deformation and annealing treatment on microstructure evolution of Fe47Mn30Co10Cr10B3 dual-phase high-entropy alloy[J]. Acta Metallurgica Sinica,2020,56(12):1569-1580(in Chinese).
    [24]
    LIU Y, TU J, DENG L, et al. Characteristics of thermal- and strain-induced ε-martensite in Fe50Mn30Co10Cr10 multi-component alloy: Effect of grain size[J]. Materials Characterization,2021,171:110817. doi: 10.1016/j.matchar.2020.110817
    [25]
    WANG J Y, FANG J H, YANG H L, et al. Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(7):1484-1494. doi: 10.1016/S1003-6326(19)65055-7
    [26]
    ZHANG M, LI R D, YUAN T C, et al. Densification and pro-perties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering[J]. Powder Technology,2019,343:58-67. doi: 10.1016/j.powtec.2018.11.005
    [27]
    YIM D, SATHIYAMOORTHI P, HONG S J, et al. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering[J]. Journal of Alloys and Compounds,2019,781:389-396. doi: 10.1016/j.jallcom.2018.12.119
    [28]
    DENG L, BAI C Y, JIANG Z T, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy[J]. Materials Science and Engineering: A,2021,822:141642. doi: 10.1016/j.msea.2021.141642
    [29]
    YUE X Y, WANG J J, YU S Y, et al. Microstructure and mechanical properties of a three-layer B4C/Al-B4C/TiB2-B4C composite[J]. Materials & Design,2013,46:285-290.
    [30]
    WEI X F, SONG J X, LIU J X, et al. Graphite nanoplatelets toughened zirconium carbide ceramics prepared by spark plasma sintering[J]. Ceramics International,2021,47(6):8461-8467. doi: 10.1016/j.ceramint.2020.11.212
    [31]
    YANG M X, YAN D S, YUAN F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength[J]. Proceedings of the National Academy of Sciences,2018,115(28):7224-7229. doi: 10.1073/pnas.1807817115
    [32]
    FU Z Q, MACDONALD B E, LI Z M, et al. Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility[J]. Materials Research Letters,2018,6(11):634-640. doi: 10.1080/21663831.2018.1526222
    [33]
    SUN X D, ZHU H G, LI J L, et al. High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers[J]. Materials Chemistry and Physics,2018,220:449-459. doi: 10.1016/j.matchemphys.2018.09.022
    [34]
    CHENG H, CHEN W, LIU X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy[J]. Materials Science and Engineering: A,2018,719:192-198. doi: 10.1016/j.msea.2018.02.040
    [35]
    LI C, ZHANG F Y, HE J N, et al. Microstructure evolution and mechanical properties of reactive plasma sprayed Ti3SiC2-Ti5Si3-TiC composite coatings[J]. Materials Chemistry and Physics,2020,254:123495. doi: 10.1016/j.matchemphys.2020.123495
    [36]
    ZHU T, WU H, ZHOU R, et al. Microstructures and tribological properties of TiC reinforced FeCoNiCuAl high-entropy alloy at normal and elevated temperature[J]. Metals,2020,10(3):387-401. doi: 10.3390/met10030387
    [37]
    张堃, 吴姚莎, 刘晓飞, 等. TiB2/AlSi10 Mg 选区激光熔化成形组织与性能[J]. 有色金属工程, 2021, 11(12):43-49. doi: 10.3969/j.issn.2095-1744.2021.12.007

    ZHANG Kun, WU Yaosha, LIU Xiaofei, et al. Microstructure and properties of TiB2/AlSi10 Mg composite prepared by selective laser melting[J]. Nonferrous Metals Engineering,2021,11(12):43-49(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.12.007
    [38]
    LI G D, LIU M W, LYU S, et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design[J]. Scripta Materialia,2021,191:196-201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (848) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return