Turn off MathJax
Article Contents
ZHOU Lingjie, SHE Yanhua, HE Jiaming, et al. Research on damage performance of steel tube reinforced by CFRP under three-point bending loads based on acoustic emission and bat algorithm[J]. Acta Materiae Compositae Sinica.
Citation: ZHOU Lingjie, SHE Yanhua, HE Jiaming, et al. Research on damage performance of steel tube reinforced by CFRP under three-point bending loads based on acoustic emission and bat algorithm[J]. Acta Materiae Compositae Sinica.

Research on damage performance of steel tube reinforced by CFRP under three-point bending loads based on acoustic emission and bat algorithm

Funds:  National Natural Science Foundation of China (51408057); Ministry of Housing and Urban Rural Development Science and Technology Project (2021-K-086)
  • Received Date: 2024-03-13
  • Accepted Date: 2024-05-01
  • Rev Recd Date: 2024-04-16
  • Available Online: 2024-06-05
  • In this study, the damage performance of carbon fiber reinforced polymer (CFRP) strengthened Q345 steel tubes under bending loads was researched. Through three-point bending tests, the bending strength and energy absorption performance under different reinforcement methods were evaluated using energy characteristic analysis. Additionally, using acoustic emission (AE) techniques, the reinforcement effects of different CFRP layup methods on steel tubes were comparatively analyzed, as well as exploring the evolution of acoustic characteristics of internal damage and bending failure. Finally, a damage classification model optimized by the bat algorithm (BA) for the least squares support vector machine (LSSVM) was proposed. The study finds that CFRP winding layers increasing can significantly enhance the bending strength and energy absorption capacity of the steel tubes, but increasing the winding angle will reduce the structural performance. By comparing the acoustic emission signals of specimens under different reinforcement methods, the effectiveness of acoustic emission technology in revealing the damage modes of carbon fiber reinforced steel tubes during bending was confirmed. Analysis of energy probability density and maximum likelihood estimation shows that, the composite tubes acoustic emission energy follow a power-law distribution at different energy levels, with the energy distribution exponent increasing with the increase of CFRP winding layers and decreasing with the increase of winding angle. The BA-LSSVM model was established to classify the degree of damage during the specimens damage process, with an accuracy of over 98%.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return