Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHOU Yan, WANG Wanquan, ZHANG Shukun, et al. Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002
Citation: ZHOU Yan, WANG Wanquan, ZHANG Shukun, et al. Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002

Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface

doi: 10.13801/j.cnki.fhclxb.20210913.002
  • Received Date: 2021-07-21
  • Accepted Date: 2021-08-29
  • Rev Recd Date: 2021-08-18
  • Available Online: 2021-09-14
  • Publish Date: 2022-08-31
  • In order to explore the ways and mechanisms to improve the thermophysical properties of paraffin-based phase change materials, Cu nano-surface-amorphous n-octadecane composite system and Cu nano-surface-graphene/n-octadecane composite system were established by introducing Cu nano-surface. And molecular dynamics simulation method was used to simulate and analyze the two composite systems. The results show that the microscopic mechanism of adding metal nanoparticles to the system to improve the thermophysical properties of phase change materials lies in not only its very high thermal conductivity, but also the interaction between the metal nano surface and the alkane molecule promoting the alkane molecule on the nano-surface directional crystallization. Graphene, as a high thermal conductivity carbon nanomaterial with excellent performance, can further promote the oriented crystallization of alkane molecules in the composite system, thereby improving the thermal conductivity of the composite phase change material in the entire system.

     

  • loading
  • [1]
    ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews,2011,15(8):3813-3832. doi: 10.1016/j.rser.2011.07.019
    [2]
    张仁元 . 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009.

    ZHANG Renyuan. Phase change materials and phase change energy storage technology[M]. Beijing: Science Press, 2009.
    [3]
    ANISUR M R, MAHFUZ M H, KIBRIA M A, et al. Curbing global warming with phase change materials for energy storage[J]. Renewable and Sustainable Energy Reviews,2013,18:23-30. doi: 10.1016/j.rser.2012.10.014
    [4]
    REDDY K S, MUDGAL V, MALLICK T K. Review of latent heat thermal energy storage for improved material stabi-lity and effective load management[J]. The Journal of Energy Storage,2018,15:205-227. doi: 10.1016/j.est.2017.11.005
    [5]
    QURESHI Z A, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review[J]. International Journal of Heat and Mass Transfer,2018(127):838-856.
    [6]
    RAO Z H, WANG S F, PENG F F. Self diffusion and heat capacity of n-alkanes based phase change materials: A molecular dynamics study[J]. International Journal of Heat and Mass Transfer,2013,64:581-589. doi: 10.1016/j.ijheatmasstransfer.2013.05.017
    [7]
    CHENG W L, LI W W, NIAN Y L, et al. Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials[J]. International Journal of Heat and Mass Transfer,2018,116:507-511. doi: 10.1016/j.ijheatmasstransfer.2017.09.032
    [8]
    SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372.
    [9]
    WU S Y, WANG H, XIAO S, et al. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry,2012,110(3):1127-1131. doi: 10.1007/s10973-011-2080-x
    [10]
    ÁGUILA V B, VASCO D A, GALVEZ P P, et al. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material[J]. International Journal of Heat and Mass Transfer,2018,120:1009-1019. doi: 10.1016/j.ijheatmasstransfer.2017.12.106
    [11]
    AL-KAYIEM H H, LIN S C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations[J]. Solar Energy,2014,109(1):82-92.
    [12]
    HUANG Y R, CHUANG P H, CHEN C L. Molecular-dyna-mics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites[J]. International Journal of Heat and Mass Transfer,2015,91:45-51. doi: 10.1016/j.ijheatmasstransfer.2015.07.110
    [13]
    LI Q, YU Y, LIU Y, et al. Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: A molecular dynamics study[J]. Materials,2017,10(1):38. doi: 10.3390/ma10010038
    [14]
    BABAEI H, KEBLINSKI P, KHODADADI J M. Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene[J]. International Journal of Heat and Mass Transfer,2013,58(1-2):209-216. doi: 10.1016/j.ijheatmasstransfer.2012.11.013
    [15]
    ZHANG S K, ZHOU Y, LI H F, et al. Microstructure and thermproperties of n-octadecane during phase transion: A molecular dynamics simulation[J]. Journal of Ovonic Research,2021,17(1):1-10.
    [16]
    SRINIVASA R S, ANANTHARAMAN T R. Accurate evaluation of lattice parameters of α-brasses[J]. Current Science,1963,32:262-263.
    [17]
    NOSE S. A unified formulation of the constant tempera-ture molecular dynamics methods[J]. The Journal of Chemical Physics,1984,81(1):511-519. doi: 10.1063/1.447334
    [18]
    SUN H J. COMPASS: An AB initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. The Journal of Physi-cal Chemistry B,1998,102(38):7338-7364. doi: 10.1021/jp980939v
    [19]
    RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer,2013,66:575-584. doi: 10.1016/j.ijheatmasstransfer.2013.07.065
    [20]
    LIU X J, RAO Z H. Thermal diffusion and phase transition of n-octadecane as thermal energy storage material on nanoscale copper surface: A molecular dynamics study[J]. Journal of the Energy Institute,2019,92(1):161-176. doi: 10.1016/j.joei.2017.10.011
    [21]
    TAO C G, FENG H J, JIAN Z, et al. Molecular simulation of oxygen adsorption and diffusion in polypropylene[J]. Acta Physico-Chimica Sinica,2009,25(7):1373-1378. doi: 10.3866/PKU.WHXB20090719
    [22]
    CUI Y B, LIU C H, SHAN H, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials and Solar Cells,2011,95(4):1208-1212. doi: 10.1016/j.solmat.2011.01.021
    [23]
    LIN C P, RAO Z H. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study[J]. Applied Thermal Engineering,2017,110:1411-1419. doi: 10.1016/j.applthermaleng.2016.09.065
    [24]
    FUJIWARA S, SATO T. Molecular dynamics simulations of structural formation of a single polymer chain: Bond-orientational order and conformational defects[J]. Journal of Chemical Physics,1997,107(2):613-622. doi: 10.1063/1.474421
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (934) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return