Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
XIANG Xiaolian, MA Zhonglei, SHI Lin, et al. Fabrication and thermally conductive properties of functionalized SiC nanowires/liquid crystal epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20211008.003
Citation: XIANG Xiaolian, MA Zhonglei, SHI Lin, et al. Fabrication and thermally conductive properties of functionalized SiC nanowires/liquid crystal epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20211008.003

Fabrication and thermally conductive properties of functionalized SiC nanowires/liquid crystal epoxy composites

doi: 10.13801/j.cnki.fhclxb.20211008.003
  • Received Date: 2021-07-21
  • Accepted Date: 2021-09-25
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-10-09
  • Publish Date: 2022-08-31
  • Highly thermally-conductive polymer-based composites have important application value in the field of electronic equipment. Based on the “intrinsic-filled” synergistic effect, the liquid crystal epoxy functionalized SiC nanowires (SiCNWs-LCE)/liquid crystal epoxy composites with low filling amount and high thermal conductivity were prepared by the liquid phase blending method, using the synthesized intrinsic thermally-conductive liquid crystal epoxy as matrix and SiCNWs-LCE as highly thermally-conductive fillers. The chemical structures, crystallization behaviors of the liquid crystal epoxy and microstructures, chemical structures and thermal stability of the functionalized SiCNWs were analyzed. The influences of SiCNWs-LCE content on the thermal conductivity and thermal stability of the SiCNWs-LCE/liquid crystal epoxy composites were investigated in detail. The results show that the SiCNWs functionalized by silane coupling agent and liquid crystal epoxy have good dispersibility. The “intrinsic-filled” synergistic effect endows the SiCNWs-LCE/liquid crystal epoxy composite with excellent thermal conduc-tive properties. The thermal conductivity of SiCNWs-LCE/liquid crystal epoxy composites increases with the SiCNWs-LCE content. Compared with the pure liquid crystal epoxy resin, the SiCNWs-LCE/liquid crystal epoxy composites exhibit an increased thermal conductivity from 0.33 W/(m·K) to 0.72 W/(m·K) with an improvement of 118%.

     

  • loading
  • [1]
    MIN P, LIU J, LI X, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced Functional Materials,2018,28:1805365. doi: 10.1002/adfm.201805365
    [2]
    王文, 夏宇. 导热绝缘材料的研究与应用[J]. 绝缘材料, 2012, 45(1):19-24. doi: 10.3969/j.issn.1009-9239.2012.01.006

    WANG W, XIA Y. Research on heat conductive insulating material and its application[J]. Insulating Materials,2012,45(1):19-24(in Chinese). doi: 10.3969/j.issn.1009-9239.2012.01.006
    [3]
    HONG H J, KWAN S M, LEE D S, et al. Highly flexible and stretchable thermally conductive composite film by polyurethane supported 3D networks of boron nitride[J]. Composites Science and Technology,2017,152:94-100. doi: 10.1016/j.compscitech.2017.09.020
    [4]
    SHAO L, SHI L, LI X, et al. Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites[J]. Composites Science and Technology,2016,135:83-91. doi: 10.1016/j.compscitech.2016.09.013
    [5]
    SONG J, CHEN C, ZHANG Y. High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films[J]. Composites Part A: Applied Science and Manufacturing,2018,105:1-8. doi: 10.1016/j.compositesa.2017.11.001
    [6]
    BAI H, XUE C, LYU J L, et al. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface[J]. Composites Part A: Applied Science and Manufacturing,2018,106:42-51. doi: 10.1016/j.compositesa.2017.11.019
    [7]
    LIU P, LI X, MIN P, et al. 3D Lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness[J]. Nano-Micro Letters,2021,13(2):13-27.
    [8]
    魏世洋, 郑智博, 余桥溪, 等. 具有rGO三维导热网络结构聚酰亚胺复合薄膜的制备及性能[J]. 高分子学报, 2019, 50(4):402-409. doi: 10.11777/j.issn1000-3304.2018.18253

    WEI S Y, ZHENG Z B, YU Q X, et al. Enhanced thermal conductivity of PI films by strengthening three-dimensional rGO network template[J]. Acta Polymerica Sinica,2019,50(4):402-409(in Chinese). doi: 10.11777/j.issn1000-3304.2018.18253
    [9]
    钟洨, 孟旭东, 张睿涵, 等. 改性纳米BN/甲基乙烯基硅橡胶导热复合材料的制备[J]. 复合材料学报, 2019, 36(11):2644-2650.

    ZHONG X, MENG X D, ZHANG R H, et al. Preparation of functionalized nano-BN/methyl vinyl silicone rubber thermal conductivity composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2644-2650(in Chinese).
    [10]
    WU Y, YE K, LIU Z, et al. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces,2019,11:44700-44707.
    [11]
    YAN Q, DAI W, GAO J, et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader[J]. ACS Nano,2021,15:6489-6498. doi: 10.1021/acsnano.0c09229
    [12]
    李果, 欧阳婷, 蒋朝, 等. 碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征[J]. 复合材料学报, 2020, 37(5):1130-1137.

    LI G, OUYANG T, JIANG Z, et al. Preparation and characterization of paraffin phase change composites reinforced by carbon fiber-graphite nanoplatelets network[J]. Acta Materiae Compositae Sinica,2020,37(5):1130-1137(in Chinese).
    [13]
    GUO Y, RUAN K, GU J. Controllable thermal conductivity in composites by constructing thermal conduction networks[J]. Materials Today Physics,2021,20:100449. doi: 10.1016/j.mtphys.2021.100449
    [14]
    LIN Y, HUANG X, CHEN J, et al. Epoxy thermoset resins with high pristine thermal conductivity[J]. High Voltage,2017,2:139-146. doi: 10.1049/hve.2017.0120
    [15]
    闫蓉, 张玲, 李春忠. 泡沫骨架构筑3D-BN/环氧树脂复合材料的制备和研究[J]. 高分子学报, 2019, 50(11):1202-1210. doi: 10.11777/j.issn1000-3304.2019.19064

    YAN R, ZHANG L, LI C Z. Study on the construction of 3D-BN network in epoxy resin by introducing foam skeleton[J]. Acta Polymerica Sinica,2019,50(11):1202-1210(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19064
    [16]
    YANG X, ZHU J, YANG D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B: Engineering,2020,185:107784. doi: 10.1016/j.compositesb.2020.107784
    [17]
    DENG Y, LI J, NIAN H. Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement[J]. Solar Energy Materials and Solar Cells,2018,174:283-291. doi: 10.1016/j.solmat.2017.09.013
    [18]
    MERCAN K, NUMANOGLU H M, AKGÖZ B, et al. Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix[J]. Archive of Applied Mechanics,2017,87:1797-1814. doi: 10.1007/s00419-017-1288-z
    [19]
    WU R, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Progress in Materials Science,2015,72:1-60. doi: 10.1016/j.pmatsci.2015.01.003
    [20]
    CHEN J, JIANG M, LIN W, et al. Scalable fabrication of novel SiC nanowire nonwoven fabric[J]. Journal of Materials Science,2017,53:3289-3295.
    [21]
    HAN Y, SHI X, WANG S, et al. Nest-like hetero-structured BNNS@SiCNWs fillers and significant improvement on thermal conductivities of epoxy composites[J]. Composites Part B: Engineering,2021,210:108666. doi: 10.1016/j.compositesb.2021.108666
    [22]
    YAO Y, ZHU X, ZENG X, et al. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2018,10:9669-9678.
    [23]
    HARADA M, OCHI M, TOBITA M, et al. Thermomechanical properties of liquid-crystalline epoxy networks arranged by a magnetic field[J]. Journal of Polymer Science, Part B: Polymer Physics,2004,42:758-765. doi: 10.1002/polb.10740
    [24]
    TAGUCHI T, TSUBAKIYAMA R, MIYAJIMA K, et al. Effect of surface treatment on photoluminescence of silicon carbide nanotubes[J]. Applied Surface Science,2017,403:308-313. doi: 10.1016/j.apsusc.2017.01.176
    [25]
    WILLIAMS E H, SCHREIFELS J A, RAO M V, et al. Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications[J]. Journal of Materials Research,2012,28:68-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (964) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return