Volume 38 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002
Citation: XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002

High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite

doi: 10.13801/j.cnki.fhclxb.20210317.002
  • Received Date: 2020-12-28
  • Accepted Date: 2021-03-07
  • Available Online: 2021-03-18
  • Publish Date: 2021-12-01
  • To reduce costs, increase environmental friendliness, and obtain a good wood feeling, ultra-highly filled polypropylene-based wood plastic composites (UH-WPCs) were successfully prepared by extrusion technology using poplar wood fiber and bamboo fiber as raw materials. Based on pronounced reduction in polypropylene matrix content, the effect of filling content and fiber species on mechanical properties and creep resistance at high and low temperatures, thermal expansion, dimensional stability, and water uptake behavior of the UH-WPCs were investigated. The results show that as the filling content increases from 75wt% to 90wt%, the linear thermal expansion coefficient of the UH-WPCs decreases drastically, creep strain decreases gradually but increases at 90wt% filling content, and the tensile and flexural moduli increase firstly and then decrease at 90wt% filling content. The tensile strength, flexural strength and impact strength decrease gradually with the increasing filling content. The UH-WPCs show higher tensile and flexural properties at −30℃, while the impact toughness is higher at 60℃. The variation of temperature, humidity and moisture content can lead to the dimensional change of UH-WPCs. The UH-WPCs exhibite obvious anisotropy in dimensional change. The largest change in dimension was observed in the thickness direction, followed by width and length direction. The effect of humidity on the dimensional stability of UH-WPCs is more significant than that of temperature. The UH-WPCs prepared with wood fiber show better comprehensive properties than that with bamboo fiber, which is attributed to the larger aspect ratio of wood fiber and better interface adhesion of wood fiber-filled UH-WPCs. The research of UH-WPCs provides a theoretical basis for reducing cost of WPCs and broadening its application scenarios.

     

  • loading
  • [1]
    MOHANTY A K, VIVEKANANDHAN S, PIN J, et al. Compo-sites from renewable and sustainable resources: Challenges and innovations[J]. Science,2018,362:536-542. doi: 10.1126/science.aat9072
    [2]
    GURUNATHAN T, MOHANTY S, NAYAK S K. A review of the recent developments in bio-composites based on na-tural fibres and their application perspectives[J]. Compo-sites Part A: Applied Science and Manufacturing,2015,77:1-25. doi: 10.1016/j.compositesa.2015.06.007
    [3]
    BALLA V K, KATE K H, SATYAVOLU J, et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites Part B: Engineering,2019,174:106956. doi: 10.1016/j.compositesb.2019.106956
    [4]
    王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.

    WANG Qingwen, YI Xing, SHEN Jing. Tailoring wood-plastic composites for furniture production: possibilities and opportunities[J]. China Forestry Science and Technology,2016,1(3):1-8(in Chinese).
    [5]
    王伟宏, 李春桃, 王清文. 木塑复合材料产业化现状及制造关键技术[J]. 现代化工, 2010(1):6-10.

    WANG Weihong, LI Chuntao, WANG Qingwen. Industrial development status and key technolo-gies of wood plastics composites[J]. Modern Chemical Industry,2010(1):6-10(in Chinese).
    [6]
    CHAUDEMANCHE S, PERROT A, PIMBERT S, et al. Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles[J]. Construction and Building Materials,2018,162:543-552. doi: 10.1016/j.conbuildmat.2017.12.061
    [7]
    王伟宏, 卢国军. 硅烷偶联剂处理玄武岩纤维增强木塑复合材料[J]. 复合材料学报, 2013, 30(S1):315-320.

    WANG Weihong, LU Guojun. The silane cou pling agent treatment of basalt fibers reinforced wood-plastic compo-site[J]. Acta Materiae Compositae Sinica,2013,30(S1):315-320(in Chinese).
    [8]
    LI T Q, WOLCOTT M P. Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple[J]. Polymer Engineering & Science,2005,45(4):549-559.
    [9]
    张娟, 宁莉萍, 杨红军, 等. 玻璃纤维含量对竹粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2016, 33(3):477-485.

    ZHANG Juan, NING Liping, YANG Hongjun, et al. Effects of glass fiber content on properties of bamboo flour/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(3):477-485(in Chinese).
    [10]
    FRIEDRICH D, LUIBLE A. Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials[J]. Construction and Building Materials,2016,124:1142-1152. doi: 10.1016/j.conbuildmat.2016.08.123
    [11]
    HAO X, ZHOU H, XIE Y, et al. Sandwich-structured wood flour/HDPE composite panels: Reinforcement using a linear low-density polyethylene core layer[J]. Construction and Building Materials,2018,164:489-496. doi: 10.1016/j.conbuildmat.2017.12.246
    [12]
    GUAN Q, YANG H, HAN Z, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science Advances,2020,6(18):z1114. doi: 10.1126/sciadv.aaz1114
    [13]
    ITO H, HATTORI H, OKAMOTO T, et al. Thermal expansion of high filler content cellulose-plastic composites[J]. Journal of Wood Chemistry and Technology,2010,30(4):360-372. doi: 10.1080/02773810903537119
    [14]
    GACITUA W, BAHR D, WOLCOTT M. Damage of the cell wall during extrusion and injection molding of wood plastic composites[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1454-1460. doi: 10.1016/j.compositesa.2010.06.007
    [15]
    KUO P, WANG S, CHEN J, et al. Effects of material compo-sitions on the mechanical properties of wood-plastic compo-sites manufactured by injection molding[J]. Materials & Design,2009,30(9):3489-3496.
    [16]
    BENTHIEN J T, THOEMEN H. Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels[J]. Composites Part A: Applied Science and Manufacturing,2012,43(4):570-576. doi: 10.1016/j.compositesa.2011.12.028
    [17]
    HAO X, ZHOU H, MU B, et al. Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of na-tural fiber/HDPE composites[J]. Composites Part B: Engineering,2020,185:107778. doi: 10.1016/j.compositesb.2020.107778
    [18]
    OU R, XIE Y, WOLCOTT M P, et al. Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites[J]. Composites Science and Technology,2014,93:68-75. doi: 10.1016/j.compscitech.2014.01.001
    [19]
    OU R, XIE Y, WANG Q, et al. Effects of ionic liquid on the rheological properties of wood flour/high density polyethylene composites[J]. Composites Part A: Applied Science and Manu-facturing,2014,61:134-140. doi: 10.1016/j.compositesa.2014.02.017
    [20]
    宋永明, 王清文. 木塑复合材料流变行为研究进展[J]. 林业科学, 2012, 48(8):143-149.

    SONG Yongming, WANG Qingwen. Research progress on rheological behavior of wood-plastic composites[J]. Scientia Silvae Sinicae,2012,48(8):143-149(in Chinese).
    [21]
    HRISTOV V, TAKÁCS E, VLACHOPOULOS J. Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites[J]. Polymer Engineering and Science,2006,46(9):1204-1214. doi: 10.1002/pen.20592
    [22]
    GUAN Q, HAN Z, YANG H, et al. Regenerated isotropic wood[J]. National Science Review,2021,8(7):9.
    [23]
    WANG Q, OU R, SHEN X, et al. Plasticizing cell walls as a strategy to produce wood-plastic composites with high wood content by extrusion processes[J]. Bioresources,2011,6(4):3621-3622.
    [24]
    ASTM. Standard test method for tensile properties of plastics: ASTM D638[S]. West conshohocken: ASTM, 2014.
    [25]
    ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West conshohocken: ASTM, 2017.
    [26]
    ASTM. Standard test methods for determining the izod pendulum impact resistance of plastics: ASTM D256[S]. West conshohocken: ASTM, 2018.
    [27]
    ASTM. Standard test method for coefficient of linear thermal expansion of plastics between −30°C and 30°C with a vitreous silica dilatometer: ASTM D696[S]. West conshohocken: ASTM, 2016.
    [28]
    ASTM. Standard test method for water absorption of plastics: ASTM D570[S]. West conshohocken: ASTM, 2018.
    [29]
    HOSSEINAEI O, WANG S, ENAYATI A A, et al. Effects of hemicellulose extraction on properties of wood flour and wood-plastic composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(4):686-694. doi: 10.1016/j.compositesa.2012.01.007
    [30]
    ADHIKARY K B, PANG S, STAIGER M P. Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust[J]. Chemical Engineering Journal,2008,142(2):190-198. doi: 10.1016/j.cej.2007.11.024
    [31]
    QI C, YADAMA V, GUO K, et al. Preparation and properties of oriented sorghum-thermoplastic composites using flat hot-pressing technology[J]. Journal of Reinforced Plastics and Composites,2015,34(15):1241-1252. doi: 10.1177/0731684415591066
    [32]
    杜复元, 张建顺, 林文青. 竹材密度的研究[J]. 竹子研究汇刊, 1992, 11(1):50-58.

    DU Fuyuan, ZHANG Jianshun, LIN Wenqing. A study on bamboo density[J]. Journal of Bamboo Research,1992,11(1):50-58(in Chinese).
    [33]
    BENIN S R, KANNAN S, BRIGHT R J, et al. A review on mechanical characterization of polymer matrix compo-sites & its effects reinforced with various natural fibres[J]. Materials Today: Proceedings,2020,33:798-805.
    [34]
    JIA Z, LI T, CHIANG F, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2018,154:53-63. doi: 10.1016/j.compscitech.2017.11.015
    [35]
    MENG J, WANG Y, YANG H, et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology,2020,191:108083. doi: 10.1016/j.compscitech.2020.108083
    [36]
    刘康, 汪荣顺, 石玉美, 等. 纤维增强聚合物基复合材料的低温性能[J]. 低温工程, 2006(5):35-44. doi: 10.3969/j.issn.1000-6516.2006.05.007

    LIU Kang, WANG Rongshun, SHE Meiyu, et al. Cryogenic performances of fibre reinforced polymer matrix compo-sites[J]. Cryogenics,2006(5):35-44(in Chinese). doi: 10.3969/j.issn.1000-6516.2006.05.007
    [37]
    BALASURIYA P W, YE L, MAI Y W. Mechanical properties of wood flake-polyethylene composites. Part I: Effects of processing methods and matrix melt flow behaviour[J]. Composites Part A: Applied Science and Manufacturing,2001,32:619-629. doi: 10.1016/S1359-835X(00)00160-3
    [38]
    OU R, ZHAO H, SUI S, et al. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylen composites[J]. Composites Part A: Applied Science and Manufacturing,2010,41(9):1272-1278. doi: 10.1016/j.compositesa.2010.05.011
    [39]
    周贤武. C3H和HCT下调转基因杨树木材细胞壁结构与性能研究[D]. 北京: 中国林业科学研究院, 2018.

    ZHOU Xianwu. Study on cell wall structure and properties of down regulated C3H and HCT transgenic poplar[D]. Beijing: Chinese Academy of Forestry, 2018(in Chinese).
    [40]
    孙宏雨, 吕兴聪, 郭垂根, 等. 杨木纤维/聚乙烯复合材料拉伸性能微观力学模型[J]. 复合材料学报, 2021, 38(1):155-164.

    SUN Hongyu, LV Xingcong, GUO Chuigen, et al. Micromechanical model of tensile properties of poplar fiber/polyethylene composite[J]. Acta Materiae Compositae Sinica,2021,38(1):155-164(in Chinese).
    [41]
    JULSON J L, SUBBARAO G, STOKKE D D, et al. Mechanical properties of biorenewable fiber/plastic composites[J]. Journal of Applied Polymer Science,2004,93(5):2484-2493. doi: 10.1002/app.20823
    [42]
    HONG H, LIAO H, ZHANG H, et al. Significant im provement in performance of recycled polyethylene/wood flour composites by synergistic compatibilization at multi-scale interfaces[J]. Composites Part A: Applied Science and Manu-facturing,2014,64:90-98. doi: 10.1016/j.compositesa.2014.04.022
    [43]
    MU B, WANG H, HAO X, et al. Morphology, mechanical properties and dimensional stability of biomass particles/high density polyethylene composites: Effect of species and composition[J]. Polymers,2018,10(3):308. doi: 10.3390/polym10030308
    [44]
    GEORGIOPOULOS P, KONTOU E, et al. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers[J]. Composites Part B: Engineering,2015,80:134-144. doi: 10.1016/j.compositesb.2015.05.046
    [45]
    HAO X, YI X, SUN L, et al. Mechanical properties, creep resistance, and dimensional stability of core/shell structured wood flour/polyethylene composites with highly filled core layer[J]. Con-struction and Building Materials,2019,226:879-887. doi: 10.1016/j.conbuildmat.2019.07.329
    [46]
    SUN L, ZHOU H, ZONG G, et al. Effects of SiO2 filler in the shell and wood fiber in the core on the thermal expansion of core-shell wood/polyethylene composites[J]. Polymers,2020,12(11):2570. doi: 10.3390/polym12112570
    [47]
    REN L, PASHAYI K, FARD H R, et al. Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers[J]. Composites Part B: Engineering,2014,58:228-234. doi: 10.1016/j.compositesb.2013.10.049
    [48]
    DHAKAL H, ZHANG Z, RICHARDSON M. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites[J]. Compo-sites Science and Technology,2007,67(7-8):1674-1683. doi: 10.1016/j.compscitech.2006.06.019
    [49]
    MACHADO J S, SANTOS S, PINHO F F S, et al. Impact of high moisture conditions on the serviceability perfor-mance of wood plastic composite decks[J]. Materials & Design,2016,103:122-131.
    [50]
    FAURE F, PERROT A, PIMBERT S, et al. Water absorption measurements on WPCs: Assessment of size and direction dependencies in order to design fast and accurate quality control tests[J]. Polymer Testing,2019,77:105899. doi: 10.1016/j.polymertesting.2019.105899
    [51]
    CHEN R S, AHMAD S, GAN S. Rice husk bio-filler reinforced polymer blends of recycled HDPE/PET: Three-dimensional stability under water immersion and mechanical performance[J]. Polymer Composites,2018,39(8):2695-2704. doi: 10.1002/pc.24260
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (1068) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return