Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZOU Jing, WANG Zhengliang, SHE Yuehui. Synthesis of bio-nanocomposite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001
Citation: ZOU Jing, WANG Zhengliang, SHE Yuehui. Synthesis of bio-nanocomposite and its application in wastewater treatment[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1534-1546. doi: 10.13801/j.cnki.fhclxb.20210719.001

Synthesis of bio-nanocomposite and its application in wastewater treatment

doi: 10.13801/j.cnki.fhclxb.20210719.001
  • Received Date: 2021-05-24
  • Accepted Date: 2021-07-14
  • Rev Recd Date: 2021-06-27
  • Available Online: 2021-07-19
  • Publish Date: 2022-04-01
  • Traditional wastewater treatment methods, such as physical, chemical and biological methods, still have many shortcomings in the treatment efficiency, human health and environmental protection, etc. However, the use of bio-nanocomposites can effectively solve the problems existing in the traditional wastewater treatment methods, which is a new material with great application prospects in wastewater treatment. This review described the synthesis mechanism of bio-nanocomposites, analyzed bio-nano composites for adsorption, photocatalytic and antibacterial mechanism of water treatment, and heavy metals in the water, organic dyes, drugs, inorganic salt and other contaminants removal applications, including hydroxyl groups on the surface of the material replaced by fluorine ion adsorption, chromium ions are adsorbed by electrostatic interaction and ion interaction. The biological part of the composite material can reduce the band gap and increase the adsorption area by absorbing the energy of a specific spectrum and catalyzing the oxidation of the pollutants adsorbed on the surface, which will eventually degrade or mineralize them. The material can directly interact with microbial cells to interrupt transmembrane electron transfer, destroy/penetrate cell envelope or oxidize cell components, or produce secondary products such as reactive oxygen species. The problems existing in controlling the morphology and particle size of nanoparticles, rapidly increasing the yield of nanoparticles and clarifying the toxicity of some sizes of nanoparticles were analyzed. In this paper the future development direction of bio-nanocomposites was put forward, achieving efficient control of green bio-nanocomposites production technology was expected. The next step is to focus on the precise mechanism of cellular and biochemical process, optimize the reaction parameters, improve the stability of the nanoparticles, explore the biological materials range of nano composite and form a mature synthesis technology scheme of bio-nanocomposites.

     

  • loading
  • [1]
    郭书雅, 刘倩, 尹先清. 含聚压裂返排废水的电絮凝处理实验研究[J]. 应用化工, 2020, 49(10):2483-2486, 2492. doi: 10.3969/j.issn.1671-3206.2020.10.018

    GUO Shuya, LIU Qian, YIN Xianqing. Experimental study on electro-flocculation treatment of fracturing flowback wastewater containing polymer[J]. Applied Chemical Industry,2020,49(10):2483-2486, 2492(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.10.018
    [2]
    郭同玲, 王章领, 邢健. 生化法实现高氯高温稠油污水COD达标排放[J]. 中国海上油气, 2006(02):134-140. doi: 10.3969/j.issn.1673-1506.2006.02.014

    GUO Tongling, WANG Zhangling, XING Jian. Biochemical method to achieve COD discharge of high-chlorine and high-temperature heavy oil wastewater[J]. China Offshore Oil and Gas,2006(02):134-140(in Chinese). doi: 10.3969/j.issn.1673-1506.2006.02.014
    [3]
    张海燕, 王宝辉, 陈颖. 光催化氧化处理含油污水的研究[J]. 化工进展, 2003(1):67-70. doi: 10.3321/j.issn:1000-6613.2003.01.017

    ZHANG Haiyan, WANG Baohui, CHEN Ying. Study on the treatment of oily wastewater by photocatalytic oxidation[J]. Chemical Industry and Engineering Progress,2003(1):67-70(in Chinese). doi: 10.3321/j.issn:1000-6613.2003.01.017
    [4]
    蒋学彬. 膜分离技术在石油工业含油污水处理中的应用研究进展[J]. 油气田环境保护, 2015, 25(05):77-80, 94. doi: 10.3969/j.issn.1005-3158.2015.05.023

    JIANG Xuebin. Research progress in the application of membrane separation technology in the treatment of oily wastewater in the petroleum industry[J]. Environmental Protection of Oil & Gas Fields,2015,25(05):77-80, 94(in Chinese). doi: 10.3969/j.issn.1005-3158.2015.05.023
    [5]
    张驰, 蔡绪森. 油田污水微生物处理技术研究进展[J]. 石油化工应用, 2014, 33(5):1-3, 12. doi: 10.3969/j.issn.1673-5285.2014.05.001

    ZHANG Chi, CAI Xusen. Research progress of oilfield wastewater microbial treatment technology[J]. Petrochemical Industry Application,2014,33(5):1-3, 12(in Chinese). doi: 10.3969/j.issn.1673-5285.2014.05.001
    [6]
    SARAVANAN A, KUMAR P S, KARISHMA S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications[J]. Chemosphere,2020,264:128580.
    [7]
    DAR O A, MALIK M A, TALUKDAR M I A, et al. Bionanocomposites in water treatment[M]//Bionanocomposites. Amsterdam: Elsevier, 2020: 505-518.
    [8]
    SHUKLA A K, UPADHYAY A K, SINGH L. Algae-mediated biological synthesis of nanoparticles: Applications and prospects[M]//Algae. Berlin: Springer, 2021: 325-338.
    [9]
    JACINTO M J, SILVA V C, VALLADÃO D M S, et al. Biosynthesis of magnetic iron oxide nanoparticles: A review[J]. Biotechnology Letters,2020,43(1):1-12.
    [10]
    PARVATHY G, SETHULEKSHMI A S, JAYAN J S, et al. Lignin based nano-composites: Synthesis and applications[J]. Process Safety and Environmental Protection,2020,145:395-410.
    [11]
    NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review[J]. Carbohydrate Polymers,2020,251:116986.
    [12]
    NASROLLAHZADEH M, SAJJADI M, IRAVANI S, et al. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives[J]. Chemosphere,2020,263:128005.
    [13]
    IHSANULLAH I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects[J]. Chemical Engineering Journal,2020,388:124340. doi: 10.1016/j.cej.2020.124340
    [14]
    哈什马特. 生物定向合成纳米复合材料和分子印迹聚合物及其在环境中的应用研究[D]. 北京: 北京化工大学, 2019.

    KHAN H D. Bio-oriented synthesis of nanocomposites and molecularly imprinted polymers and their applications in the environment[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [15]
    PRAJAPATI C, JOLLY A, RAVULAPALLI S. Bio inspired synthesis of silver nanoparticles and its applications to spin–orbit interactions of light[J]. Nano Express,2020,1(3):030031. doi: 10.1088/2632-959X/abca4c
    [16]
    KLEM M T, WILLITS D, SOLIS D J, et al. Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles[J]. Advanced Functional Materials,2005,15(9):1489-1494. doi: 10.1002/adfm.200400453
    [17]
    HUANG J, LIN L, SUN D, et al. Bio-inspired synthesis of metal nanomaterials and applications[J]. Chemical Society Reviews,2015,44(17):6330-6374. doi: 10.1039/C5CS00133A
    [18]
    SHAABANI A, SHADI M, MOHAMMADIAN R, et al. Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water[J]. Applied Organometallic Chemistry,2019,33(9):e5074.
    [19]
    VELUSAMY P, KUMAR G V, JEYANTHI V, et al. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application[J]. Toxicological Research,2016,32(2):95-102. doi: 10.5487/TR.2016.32.2.095
    [20]
    DU L, JIANG H, LIU X, et al. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin[J]. Electrochemistry Communications,2007,9(5):1165-1170. doi: 10.1016/j.elecom.2007.01.007
    [21]
    DAMERON C T, REESE R N, MEHRA R K, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature,1989,338(6216):596-597. doi: 10.1038/338596a0
    [22]
    SENAPATI S, SYED A, MOEEZ S, et al. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis[J]. Materials Letters,2012,79:116-118. doi: 10.1016/j.matlet.2012.04.009
    [23]
    AYANO H, MIYAKE M, TERASAWA K, et al. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles[J]. Journal of bioscience and bioengineering,2014,117(5):576-581. doi: 10.1016/j.jbiosc.2013.10.010
    [24]
    BHATIA P, VERMA S, SINHA M. Size-dependent optical response of magneto-plasmonic core-shell nanoparticles[J]. Advanced Nano Research,2018,1(1):1-13.
    [25]
    JAYASHREE, JENA, NILOTPALA, et al. Microalga Scenedesmus sp. : A potential low-cost green machine for silver nano-particle synthesis[J]. Journal of Microbiology and Biotechnology,2014,24(4):522-533. doi: 10.4014/jmb.1306.06014
    [26]
    CHANDRAN S P, CHAUDHARY M, PASRICHA R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract[J]. Biotechnology Progress,2006,22(2):577-583. doi: 10.1021/bp0501423
    [27]
    ANSHUP, VENKATARAMAN J S, SUBRAMANIAM C, et al. Growth of gold nanoparticles in human cells[J]. Langmuir,2005,21(25):11562-11567. doi: 10.1021/la0519249
    [28]
    LARIOS-RODRIGUEZ E, RANGEL-AYON C, CASTILLO S J, et al. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo[J]. Nanotechnology,2011,22(35):355601. doi: 10.1088/0957-4484/22/35/355601
    [29]
    董周焱, MANIK P N R, 肖敏, 等. 微生物合成纳米银的一般方法及产物性质鉴定与生产应用[J]. 微生物学杂志, 2019, 39(3):84-94. doi: 10.3969/j.issn.1005-7021.2019.03.012

    DONG Zhouyan, MANIK P N R, XIAO Min, et al. General method of microbial synthesis of nano-silver, identification of product properties and production application[J]. Journal of Microbiology,2019,39(3):84-94(in Chinese). doi: 10.3969/j.issn.1005-7021.2019.03.012
    [30]
    SARAVANAN A, KUMAR P S, KARISHMA S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications[J]. Chemosphere,2021,264:128580. doi: 10.1016/j.chemosphere.2020.128580
    [31]
    MONDAL P, PURKAIT M. Preparation and characterization of novel green synthesized iron-aluminum nanocomposite and studying its efficiency in fluoride removal[J]. Chemosphere,2019,235:391-402. doi: 10.1016/j.chemosphere.2019.06.189
    [32]
    KONG M, CHEN X G, XING K, et al. Antimicrobial properties of chitosan and mode of action: A state of the art review[J]. International Journal of Food Microbiology,2010,144(1):51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012
    [33]
    MIRABEDINI M, KASSAEE M Z, POORSADEGHI S. Novel magnetic chitosan hydrogel film, cross-linked with glyoxal as an efficient adsorbent for removal of toxic Cr(VI) from water[J]. Arabian Journal for Science & Engineering,2017,42(1):115-124.
    [34]
    ZHAO Y, GUO L, SHEN W, et al. Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal[J]. Carbohydrate Polymers,2020,230:115639. doi: 10.1016/j.carbpol.2019.115639
    [35]
    FUJISHIMA A, ZHANG X, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports,2008,63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001
    [36]
    LEE S-Y, PARK S-J. TiO2 photocatalyst for water treatment applications[J]. Journal of Industrial and Engineering Chemistry,2013,19(6):1761-1769. doi: 10.1016/j.jiec.2013.07.012
    [37]
    JAYANTHI KALAIVANI G, SUJA S K. TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue[J]. Carbohydrate Polymers,2016,143:51-60. doi: 10.1016/j.carbpol.2016.01.054
    [38]
    AHMAD N, SULTANA S, KUMAR G, et al. Polyaniline based hybrid bionanocomposites with enhanced visible light photocatalytic activity and antifungal activity[J]. Journal of Environmental Chemical Engineering,2019,7(1):102804. doi: 10.1016/j.jece.2018.11.048
    [39]
    CALVETE M J F, PICCIRILLO G, VINAGREIRO C S, et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics[J]. Coordination Chemistry Reviews,2019,395:63-85. doi: 10.1016/j.ccr.2019.05.004
    [40]
    LI Q, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water Research,2008,42(18):4591-4602. doi: 10.1016/j.watres.2008.08.015
    [41]
    QI L, XU Z, JIANG X, et al. Preparation and antibacterial activity of chitosan nanoparticles[J]. Carbohydrate Research,2004,339(16):2693-2700. doi: 10.1016/j.carres.2004.09.007
    [42]
    RABEA E I, BADAWY E T, STEVENS C V, et al. Chitosan as antimicrobial agent: Applications and mode of action[J]. Biomacromolecules,2003,4(6):1457-1465. doi: 10.1021/bm034130m
    [43]
    MANNA S, PRAKASH S, DAS P. Synthesis of graphene oxide nano-materials coated bio-char using carbonaceous industrial waste for phenol separation from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,581:123818. doi: 10.1016/j.colsurfa.2019.123818
    [44]
    PARK S J, LEE S Y, JIN F L. Surface modification of carbon nanotubes for high-performance polymer composites[M]. Berlin: Springer, 2015: 13-59.
    [45]
    OLYA M E, PIRKARAMI A. On the positive role of doping Cu and N2 on TiO2 in improving dye degradation efficiency: Providing reaction mechanisms[J]. Korean Jour-nal of Chemical Engineering,2015,32(8):1586-1597. doi: 10.1007/s11814-014-0380-0
    [46]
    ESFAHANI I J, RASHIDI J, IFAEI P, et al. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review[J]. Korean Journal of Chemical Engineering,2016,33(2):351-387. doi: 10.1007/s11814-015-0296-3
    [47]
    LIN P C, HSIEH C T, LIU X, et al. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate[J]. Chemical Engineering Journal,2021,405:126996. doi: 10.1016/j.cej.2020.126996
    [48]
    LIU P, BORRELL P F, BOŽIČ M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials,2015,294:177-185. doi: 10.1016/j.jhazmat.2015.04.001
    [49]
    ZHANG W, WANG X, ZHANG Y, et al. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes[J]. Separation and Purification Technology,2020,242:116523. doi: 10.1016/j.seppur.2020.116523
    [50]
    BATMAZ R, MOHAMMED N, ZAMAN M, et al. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes[J]. Cellulose,2014,21(3):1655-1665. doi: 10.1007/s10570-014-0168-8
    [51]
    CHEN L, BERRY R M, TAM K C. Synthesis of β-Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods[J]. ACS Sustainable Che-mistry & Engineering,2014,2(4):951-958.
    [52]
    HOKKANEN S, REPO E, BHATNAGAR A, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose[J]. Environmental Technology,2014,35(18):2334-2346. doi: 10.1080/09593330.2014.903300
    [53]
    DARABITABAR F, YAVARI V, HEDAYATI A, et al. Novel cellulose nanofiber aerogel for aquaculture wastewater treatment[J]. Environmental Technology & Innovation,2020,18:100786.
    [54]
    BHATTACHARYA P, SWARNAKAR S, GHOSH S, et al. Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation[J]. Journal of Environmental Chemical Engineering,2019,7(1):102867. doi: 10.1016/j.jece.2018.102867
    [55]
    ROSTAMI H, KHOSRAVI F, MOHSENI M, et al. Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation[J]. International Journal of Biological Macromolecules,2018,107:343-348. doi: 10.1016/j.ijbiomac.2017.08.179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (1081) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return