Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LIU Jiayuan, ZHANG Hongliang, ZUO Xiaobao, et al. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004
Citation: LIU Jiayuan, ZHANG Hongliang, ZUO Xiaobao, et al. Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5046-5056. doi: 10.13801/j.cnki.fhclxb.20221213.004

Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar

doi: 10.13801/j.cnki.fhclxb.20221213.004
Funds:  National Natural Science Foundation of China (52078252; 51778297)
  • Received Date: 2022-10-05
  • Accepted Date: 2022-12-02
  • Rev Recd Date: 2022-11-13
  • Available Online: 2022-12-14
  • Publish Date: 2023-09-15
  • In order to obtain nanomaterials with better dispersal, filling and barrier properties, which were used as fillers to enhance the protection of the epoxy coatings for cement mortar, the polydopamine (PDA), which was prepared by self-polymerization of dopamine hydrochloride (DA) and silane coupling agent (KH550), was utilized to modify nano hexagonal boron nitride (hBN) and nano silicon dioxide (SiO2), respectively, to obtain two nanomaterials polydopamine hexagonal boron nitride (PDABN) and functionalised SiO2 (fSiO2) by polymerization reactions. A new nanomaterial, polydopamine hexagonal boron nitride-functionalised silicon dioxide (PDABN-fSiO2), was synthesized, and it was mixed with epoxy to prepare a modified coating. The coating was covered on the surface of cement mortar to enhance its carbonation resistance. The microscopic characteristics of nano materials were observed by FTIR, SEM-EDS and XPS. The modified effect of epoxy coating by nano PDABN-fSiO2 was analyzed by carbonation experiments and permeability tests. Results indicate that the prepared nano PDABN-fSiO2 has a layer-particle structure and better dispersion in coating, which can effectively slow down the penetration of CO2 in the coating. Compared with the blank coating, the carbonation depth of the cement mortar coated with nano PDABN-fSiO2/epoxy coating is decreased by 68.7%, 72.9% and 64.8% at 7, 14 and 28 days of carbonation, respectively, and the permeability of its coating is decreased by 34.7% at 48 hours. Thus, the epoxy coating with nano PDABN-fSiO2 can significantly improve the carbonation resistance of cement mortar and reduce its permeability.

     

  • loading
  • [1]
    孙伟. 荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J]. 东南大学学报(自然科学版), 2006, 36(S2):7-14.

    SUN Wei. Durability and service life of structure concrete under load and environment coupling effects[J]. Journal of Southeast University (Natural Science Edition),2006,36(S2):7-14(in Chinese).
    [2]
    李士彬, 孙伟. 疲劳、碳化和氯盐作用下混凝土劣化的研究进展[J]. 硅酸盐学报, 2013, 41(11):1459-1464.

    LI Shibin, SUN Wei. Review on deterioration of concrete subjected to coupling effect of fatigue load, carbonation and chlorides[J]. Journal of the Chinese Ceramic Society,2013,41(11):1459-1464(in Chinese).
    [3]
    柏朱安. 有机成膜涂层混凝土抗碳化性能的时变退化[D]. 徐州: 中国矿业大学, 2017.

    BO Zhu'an. Time-varying degradation of carbonation re-sistance of organic film-forming coated concrete[D]. Xuzhou: China University of Mining and Technology, 2017(in Chinese).
    [4]
    马骏, 孙冬, 张明爽, 等. 氧化石墨烯改性环氧树脂涂料的制备及防腐性能[J]. 化工进展, 2021, 40(8):4456-4462. doi: 10.16085/j.issn.1000-6613.2020-1790

    MA Jun, SUN Dong, ZHANG Mingshuang, et al. Preparation of graphene oxide modified epoxy resin coating and research on its anti-corrosive performance[J]. Chemical Industry and Engineering Progress,2021,40(8):4456-4462(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1790
    [5]
    汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and pro-perties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese).
    [6]
    LI G, HU W J, CUI H Y, et al. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings[J]. Construction and Building Materials,2019,201:623-630. doi: 10.1016/j.conbuildmat.2019.01.004
    [7]
    范春华. 氧化石墨烯改性环氧树脂涂层提升混凝土抗碳化性能的研究[D]. 徐州: 中国矿业大 学, 2021.

    FAN Chunhua. Research on graphene oxide modified epoxy resin coating to enhance the anti-carbonation performance of concrete[D]. Xuzhou: China University of Mining and Technology, 2021(in Chinese).
    [8]
    郑昌佶, 王博, 杨佳明, 等. 纳米SiO2分散性对SiO2/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2023, 40(3):1417-1429.

    ZHENG Changji, WANG Bo, YANG Jiaming, et al. Influence of nano-SiO2 dispersion on the direct current dielectric properties of SiO2/LDPE nanocomposite[J]. Acta Materiae Compositae Sinica,2023,40(3):1417-1429(in Chinese).
    [9]
    YU Z X, DI H H, MA Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied Surface Science,2015,351:986-996. doi: 10.1016/j.apsusc.2015.06.026
    [10]
    徐凡, 刘雨薇, 高梦幻, 等. 碳掺杂六方氮化硼通过增强静电相互作用高效去除水中的Cu2+[J]. 离子交换与吸附, 2021, 37(6):481-493.

    XU Fan, LIU Yuwei, GAO Menghuan, et al. Carbon doped h-boron nitride for effective removal of Cu2+ from water via enhanced electrostatic interaction[J]. Ion Exchange and Adsorption,2021,37(6):481-493(in Chinese).
    [11]
    YANG Y C, SONG Z G, LU G Y, et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride[J]. Nature,2021,594(7861):57-61. doi: 10.1038/s41586-021-03488-1
    [12]
    中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [13]
    SONG J, DAI Z D, LI J Y, et al. Polydopamine-decorated boron nitride as nano-reinforcing fillers for epoxy resin with enhanced thermomechanical and tribological properties[J]. Materials Research Express,2018,5(7):075029. doi: 10.1088/2053-1591/aab529
    [14]
    WAN P Y, ZHAO N, QI F G, et al. Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties[J]. Progress in Organic Coatings,2020,146:105713. doi: 10.1016/j.porgcoat.2020.105713
    [15]
    中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Testing specifications for concrete in water transport engineering: JTS/T 236—2019[S]. Beijing: China Communications Press, 2019(in Chinese).
    [16]
    GUO Z Q, SUN L, HOU H, et al. Construction of novel maple leaf-like MnO2-SiO2@PDA composites for highly efficient removal of Cu(II), Cd(II) and Ni(II) from aqueous solution[J]. Separation and Purification Technology,2022,291:120943. doi: 10.1016/j.seppur.2022.120943
    [17]
    MUHAMMAD M, HU S H, MA R N, et al. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly(dopamine) modified h-BN nanosheets on zinc phosphate-silane coating[J]. Surface and Coatings Technology,2020,390:125682. doi: 10.1016/j.surfcoat.2020.125682
    [18]
    JIN W Q, YUAN L, LIANG G Z, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability[J]. ACS Applied Materials & Interfaces,2014,6(17):14931-14944.
    [19]
    MA G X, XU J X, HAN L, et al. Enhanced inhibition performance of NO2-intercalated MgAl-LDH modified with nano-SiO2 on steel corrosion in simulated concrete pore solution[J]. Corrosion Science,2022,204:110387. doi: 10.1016/j.corsci.2022.110387
    [20]
    WEI N, JIANG Y Y, YING Y, et al. Facile construction of a polydopamine-based hydrophobic surface for protection of metals against corrosion[J]. RSC Advances,2017,7(19):11528-11536. doi: 10.1039/c7ra00267j
    [21]
    LIU H S, TARIQ N U H, HAN R F, et al. Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique[J]. Journal of Non-Crystalline Solids,2022,575:121204. doi: 10.1016/j.jnoncrysol.2021.121204
    [22]
    PRASAD V, SEKAR K, JOSEPH M A. Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites[J]. Construction and Building Materials,2021,284:122803. doi: 10.1016/j.conbuildmat.2021.122803
    [23]
    XI Z Y, XU Y Y, ZHU L P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. Journal of Membrane Science,2009,327:244-253. doi: 10.1016/j.memsci.2008.11.037
    [24]
    WAN X Y, ZHAN Y Q, LONG Z H, et al. High-performance magnetic poly(arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550[J]. Applied Surface Science,2017,425:905-914. doi: 10.1016/j.apsusc.2017.07.136
    [25]
    WANG D, LIU D, XU J H, et al. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy[J]. Materials Horizons,2022,9(2):640-652. doi: 10.1039/D1MH01746B
    [26]
    张宏亮, 冯礼奎, 宋小宁, 等. 环己胺甲基脲气相缓蚀剂的缓蚀作用研究[J]. 表面技术, 2018, 47(10):45-50. doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006

    ZHANG Hongliang, FENG Likui, SONG Xiaoning, et al. Corrosion inhibition of cyclohexyl-aminomethyl-urea as volatile corrosion inhibitor[J]. Surface Technology,2018,47(10):45-50(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2018.10.006
    [27]
    SONG B J, SHI Y C, LIU Q D. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti-corrosion property of waterborne epoxy[J]. Polymers for Advanced Technologies,2020,31(2):309-318. doi: 10.1002/pat.4770
    [28]
    LIU Y, LIN Q, CHEN J Q, et al. PDMS-OH and nano-SiO2 modified KH570-TEOS silica-sol coating and protective effect on concrete[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,648:129279. doi: 10.1016/j.colsurfa.2022.129279
    [29]
    赵明月, 裴晓园, 王维, 等. 二维纳米填料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5):2049-2059.

    ZHAO Mingyue, PEI Xiaoyuan, WANG Wei, et al. Application of two-dimensional nanomaterial/epoxy composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica,2022,39(5):2049-2059(in Chinese).
    [30]
    MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088
    [31]
    WU Y M, YU J J, ZHAO W J, et al. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel[J]. Progress in Organic Coatings,2019,133:8-18. doi: 10.1016/j.porgcoat.2019.04.028
    [32]
    随林林, 刘芳, 陈晓蕊, 等. 纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能[J]. 复合材料学报, 2018, 35(7):1716-1724.

    SUI Linlin, LIU Fang, CHEN Xiaorui, et al. Preparation and corrosion resistance of nano SiO2-graphene oxide/epoxy composite coating[J]. Acta Materiae Compositae Sinica,2018,35(7):1716-1724(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (578) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return