Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007
Citation: SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007

Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks

doi: 10.13801/j.cnki.fhclxb.20211028.007
  • Received Date: 2021-08-26
  • Accepted Date: 2021-10-23
  • Rev Recd Date: 2021-10-04
  • Available Online: 2021-10-29
  • Publish Date: 2022-08-22
  • The development of polymer-based thermally conductive composites with low filling and high thermally conductivity remains a bottleneck problem that needs to be solved. Based on the layer-by-layer hydrogen-bond assembly, the low filling and high thermally conductive BNNS@PDA/PU composites are prepared by the dip coating-hot pressing method, using the porous polyurethane (PU) foams as template, and polydopamine functionalized nitride boron nanosheets (BNNS@PDA) as thermally conductive fillers. The microstructures, thermal conductive properties and thermal stability of BNNS@PDA and BNNS@PDA/PU composites were investigated in detail. The results show that the surface functionalization of BNNS by PDA can make it coat well on the three-dimensional skeleton of porous PU foams. After hot pressing, the highly effective double heat-conduction networks with the PU skeleton as the main heat-conduction network and BNNS@PDA on the surface of PU skeleton as the secondary heat-conduction network are constructed, leading to the decreased interfacial thermal resistance of the thermally conductive composites. When the filling amount of BNNS@PDA is 16.3wt%, the thermal conductivity of BNNS@PDA/PU composites with double heat-conduction networks reaches 0.783 W/(m·K), which is 102.3% higher than that of PU with single heat-conduction network (0.387 W/(m·K)).

     

  • loading
  • [1]
    SONG Y, JIANG F, SONG N, et al. Multilayered structural design of fexible flms for smart thermal management[J]. Composites Part A: Applied Science and Manufacturing,2021,141:106222. doi: 10.1016/j.compositesa.2020.106222
    [2]
    CHEN J, HUANG X Y, ZHU Y K, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal managementcapability[J]. Advanced Functional Materials,2017,27(5):1604754. doi: 10.1002/adfm.201604754
    [3]
    ZENG X L, SUN J L, YAO Y M, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano,2017,11(5):5167-5178. doi: 10.1021/acsnano.7b02359
    [4]
    GU J W, RUAN K P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nano-Micro Letters,2021,13:110. doi: 10.1007/s40820-021-00640-4
    [5]
    ZHENG D W, PAUL P, MEZIANI M J, et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties[J]. Nanoscale Advances,2020,2(6):2507-2513. doi: 10.1039/D0NA00190B
    [6]
    TESSEMA A, DAN Z, MOLL J, et al. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites[J]. Polymer Testing,2016,57:101-106.
    [7]
    CHO H B, TOKOI Y, TANAKA S, et al. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN[J]. Composites Science and Technology,2011,71(8):1046-1052. doi: 10.1016/j.compscitech.2011.03.002
    [8]
    FU L, WANG T, YU J H, et al. An high-performance heat spreader fabricated with boron nitride nanosheets[J]. 2D Materials,2017,4:025047. doi: 10.1088/2053-1583/aa636e
    [9]
    YU C, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 25-31.
    [10]
    CHEN X, LIM J, YAN W, et al. Salt template assisted BN scaffold fabrication towards highly thermal conductive epoxy composites[J]. ACS Applied Materials & Interfaces,2020,12(14):16987-16996.
    [11]
    WANG X W, WU P Y. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal,2018,348:723-731. doi: 10.1016/j.cej.2018.04.196
    [12]
    ZHU Q, CHU Y, WANG Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A,2013,1(17):5386-5393. doi: 10.1039/c3ta00125c
    [13]
    SU B, WANG S, SONG Y, et al. Utilizing super hydrophilic materials to manipulate oil droplets arbitrarily in water[J]. Soft Matter,2011,7(11):5144-5149. doi: 10.1039/c0sm01480j
    [14]
    ADEBAJO M O, FROST R L, KLOPROGGE J T, et al. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties[J]. Journal of Porous Materials,2003,10:159-170. doi: 10.1023/A:1027484117065
    [15]
    ZHANG X, ZHOU L, LIU K, et al. Bioinspired multifunctional foam with self-cleaning and oil/water separation[J]. Advanced Functional Materials,2013,23(22):2881-2886. doi: 10.1002/adfm.201202662
    [16]
    杨振生, 张阳阳, 李春利, 等. 疏水聚氨酯海绵吸油材料研究进展[J]. 化工新型材料, 2019, 47(8):34-38.

    YANG Zhensheng, ZHANG Yangyang, LI Chunli, et al. Progress of hydrophobic polyurethane sponge used as oil sorbent material[J]. New Chemical Materials,2019,47(8):34-38(in Chinese).
    [17]
    YANG W, WANG Y F, LI Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation[J]. Composites Part B: Engineering,2021,224:109168. doi: 10.1016/j.compositesb.2021.109168
    [18]
    ZENG X, YAO Y, GONG Z, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [19]
    MA T B, ZHAO Y S, RUAN K P, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nano-fiber composite papers with nacre-mimetic layered structures[J]. ACS Applied Materials & Interfaces,2020,12(1):1677-1686.
    [20]
    LIU Y L, AI K L, LU L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews,2014,114(9):5057-5115. doi: 10.1021/cr400407a
    [21]
    余翠平. 有序排列氮化硼/聚合物复合材料的可控制备与导热性能研究[D]. 西安: 西北工业大学, 2018.

    YU Cuiping. Study on controllable preparation and thermal conductivity of aligned boron nitride/polymer composites[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [22]
    张军, 郑昌仁, 冯今明. 高聚物的热传导性质[J]. 高分子通报, 2001(6):54-59. doi: 10.3969/j.issn.1003-3726.2001.06.007

    ZHANG Jun, ZHENG Changren, FENG Jinming. Survey of thermal conductivity property of polymer[J]. Polymer Bulletin,2001(6):54-59(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.06.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1150) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return