Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
GU Na, WANG Tiantian, LI Hong, et al. Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001
Citation: GU Na, WANG Tiantian, LI Hong, et al. Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5760-5771. doi: 10.13801/j.cnki.fhclxb.20230104.001

Activated chlorine-modified zirconium-based MOF composites for efficient bacterial inhibition

doi: 10.13801/j.cnki.fhclxb.20230104.001
  • Received Date: 2022-10-25
  • Accepted Date: 2022-12-22
  • Rev Recd Date: 2022-12-05
  • Available Online: 2023-01-04
  • Publish Date: 2023-10-15
  • In recent years, serious industrial pollution has led to the growth of various types of bacteria, and pathogenic bacterial infections can be spread rapidly by various means, posing a great risk of infection. Therefore, it is important to develop high-performance antibacterial materials and study their antibacterial mechanisms for application. To address this issue, this work designed a novel nanocomposite bacteriostatic material UiO-66-NHCl by modifying zirconium-based metal-organic backbone material UiO-66-NH2 via sodium chlorite solution, and characterized the structure and chemical composition of metal-organic framework (MOF) composites by using XRD, FTIR, SEM, TEM, EDS and XPS, and the effects of different loading processes on the chlorine loading were also explored, and the antibacterial properties and skin irritation experiments of UiO-66-NHCl composites were investigated. The results show that the active chlorine is introduced on UiO-66-NH2 by impregnation bonding, and the chlorine loading can be increased by changing the chlorine loading ratio (mass ratios m(UiO-66-NH2)∶m(NaClO2)) and chlorination time of UiO-66-NH2 in NaClO2 solution, and the highest chlorine loading is achieved when the chlorine loading ratio is 1∶5 and the chlorination time is 4 h. Under the conditions of high temperature, high humidity and high temperature, it can still maintain 80% of its original chlorine loading and has good stability. The inhibition activity show that the UiO-66-NHCl composites inhibit both Staphylococcus aureus and Escherichia coli compared to the original UiO-66-NH2 material, and the samples with higher chlorine content show higher inhibition effect and no irritation.

     

  • loading
  • [1]
    PETERSON G W, LEE D T, BARTON H F, et al. Fibre-based composites from the integration of metal-organic frameworks and polymers[J]. Nature Reviews Materials,2021,6(7):605-621. doi: 10.1038/s41578-021-00291-2
    [2]
    孙丹, 宿丽娟, 鞠晓红. 579株肠杆菌科细菌感染的临床特征及耐药性分析[J]. 吉林医药学院学报, 2022, 43(6):416-419. doi: 10.13845/j.cnki.issn1673-2995.2022.06.023

    SUN Dan, SU Lijuan, JU Xiaohong. Clinical characteristics and drug resistance of 579 strains of Enterobacteriaceae[J]. Journal of Jilin Medical College,2022,43(6):416-419(in Chinese). doi: 10.13845/j.cnki.issn1673-2995.2022.06.023
    [3]
    陈康. 多重耐药革兰阴性杆菌下呼吸道感染的临床分析[J]. 中国处方药, 2021, 19(8):172-174. doi: 10.3969/j.issn.1671-945X.2021.08.080

    CHEN Kang. Clinical analysis of multidrug-resistant gram-negative bacilli in lower respiratory tract infection[J]. Journal of China Prescription Drug,2021,19(8):172-174(in Chinese). doi: 10.3969/j.issn.1671-945X.2021.08.080
    [4]
    DING X, YANG C, MOREIRA W, et al. A macromolecule reversing antibiotic resistance phenotype and repurposing drugs as potent antibiotics[J]. Advanced Science,2020,7(17):2001374. doi: 10.1002/advs.202001374
    [5]
    PAPKOU A, HEDGE J, KAPEL N, et al. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates[J]. Nature Communications,2020,11:3970. doi: 10.1038/s41467-020-17735-y
    [6]
    YAN L, GOPAL A, KASHIF S, et al. Metal organic frameworks for antibacterial applications[J]. Chemical Engineering Journal,2022,435:134975. doi: 10.1016/j.cej.2022.134975
    [7]
    PEJMAN M, FIROUZJAEI M D, AKTIJ S A, et al. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks[J]. Journal of Membrane Science,2020,611:118352. doi: 10.1016/j.memsci.2020.118352
    [8]
    AYYAGARI S, AL-HAIK M, REN Y, et al. Metal organic frameworks modification of carbon fiber composite interface[J]. Composites Part B: Engineering,2021,224:109197. doi: 10.1016/j.compositesb.2021.109197
    [9]
    SUN H, DAN J, LIANG Y M, et al. Dimensionality reduction boosts the peroxidaselike activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication[J]. Nanoscale,2022,14(32):11693-11702. doi: 10.1039/d2nr02828j
    [10]
    RAZA H, YILDIZ I, YASMEEN F, et al. Synthesis of a 2D copper (II)-carboxylate framework having ultrafast adsorption of organic dyes[J]. Journal of Colloid and Interface Science,2021,602:43-54. doi: 10.1016/j.jcis.2021.05.169
    [11]
    HATAMIE S, AHADIAN M M, ZOMOROD M S, et al. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework[J]. Materials Science and Engineering: C,2019,104:109862. doi: 10.1016/j.msec.2019.109862
    [12]
    ZHENG S S, ZHOU H J, XUE H G, et al. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage[J]. Journal of Colloid and Interface Science,2022,614:130-137. doi: 10.1016/j.jcis.2022.01.094
    [13]
    ZHOU D B, CHEN Y X, BU W H, et al. Modification of metal-organic framework nanoparticles using dental pulp mesenchymal stem cell membranes to target oral squamous cell carcinoma[J]. Journal of Colloid and Interface Science,2021,601:650-660. doi: 10.1016/j.jcis.2021.05.126
    [14]
    LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSX composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science,2022,605:385-397. doi: 10.1016/j.jcis.2021.07.098
    [15]
    LIANG L F, LIU C P, JIANG F L, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework[J]. Nature Communications,2017,8:1-10. doi: 10.1038/s41467-016-0009-6
    [16]
    郝凌婉. 新型金属有机骨架复合膜的制备及其抗菌性能的研究[D]. 长春: 吉林大学, 2021.

    HAO Lingwan. Preparation and antibacterial application of novel metal-organic frameworks somposite films[D]. Changchun: Jilin University, 2021(in Chinese).
    [17]
    余方锦, 巫晨静, 吴贻强, 等. 金属有机骨架抗菌性能的研究进展[J]. 中国卫生检验杂志, 2022, 32(14):1782-1785.

    YU Fangjin, WU Chenjing, WU Yiqiang, et al. Advances in antibacterial properties of metal organic skeletons[J]. Chinese Journal of Health Laboratory Technology,2022,32(14):1782-1785(in Chinese).
    [18]
    刘瑶瑶. 卟啉金属有机骨架的光动力杀菌性能及其复合抗菌膜应用研究[D]. 无锡: 江南大学, 2021.

    LIU Yaoyao. Photodynamic sterilization performance of porphyrinic metal-organic frameworks and the application of composite antibacterial film[D]. Wuxi: Jiangnan University, 2021(in Chinese).
    [19]
    裴震, 郭建栋, 张倩, 等. 金属-有机骨架抗菌复合材料与纤维的研究进展及应用[J]. 复合材料学报, 2021, 38(8):2396-2403. doi: 10.13801/j.cnki.fhclxb.20210507.001

    PEI Zhen, GUO Jiandong, ZHANG Qian, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fibers[J]. Acta Materiae Compositae Sinica,2021,38(8):2396-2403(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210507.001
    [20]
    黄文光, 张淑娟. UIO-66-NH2金属有机骨架材料的键合改性[C]//2018第二届全国光催化材料创新与应用学术研讨会摘要集. 长沙: 中国化工学会, 2018: 27.

    HUANG Wenguang, ZHANG Shujuan. Bonding modification of UIO-66-NH2 metal-organic backbone materials[C]// 2018 2nd National Symposium on Innovation and Application of Photocatalytic Materials Abstracts Collection. Changsha: The Chemical Industry and Engineering Society of China, 2018: 27(in Chinese).
    [21]
    ZHANG X, HAO X X, QIU S H, et al. Efficient capture and release of carboxylated benzisothiazolinone from UiO-66-NH2 for antibacterial and antifouling applications[J]. Journal of Colloid and Interface Science,2022,623:710-722. doi: 10.1016/j.jcis.2022.05.065
    [22]
    SAMARI M, ZINADINI S, ZINATIZADEH A A, et al. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF)[J]. Separation and Purification Technology,2020,251:117010. doi: 10.1016/j.seppur.2020.117010
    [23]
    BUNGE M A, DAVIS A B, WEST K N, et al. Synthesis and characterization of UiO-66-NH2 metal-organic framework cotton composite textiles[J]. Industrial & Engineering Chemistry Research,2018,57(28):9151-9161.
    [24]
    SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals[J]. Chemistry—A European Journal,2011,17(24):6643-6651. doi: 10.1002/chem.201003211
    [25]
    ZHU J J, WU L B, BU Z Y, et al. Polyethyleneimine-modified UiO-66-NH2 (Zr) metal-organic frameworks: Preparation and enhanced CO2 selective adsorption[J]. ACS Omega,2019,4(2):3188-3197. doi: 10.1021/acsomega.8b02319
    [26]
    卫生部卫生法制与监督司. 消毒技术规范第一分册[M]. 北京: 中华人民共和国卫生部, 2002.

    Department of Health Legislation and Supervision, Ministry of Health. The first volume of disinfection technical specifications[M]. Beijing: Ministry of Health of the People's Republic of China, 2002(in Chinese).
    [27]
    金瑞, 张娜, 陈娜, 等. 吡啶-2-甲醛共价接枝UiO-66-NH2负载铁系催化剂的合成及催化乙烯齐聚性能[J]. 化学通报, 2022, 85(9): 1127-1132.

    JIN Rui, ZHANG Na, CHEN Na, et al. Synthesis and catalytic performance in ethylene oligomerization of pyridine-2-formaldehyde covalently grafted to UIO-66-NH2 supported iron catalyst[J]. Chemistry, 2022, 85(9): 1127-1132(in Chinese).
    [28]
    HAN Y T, LIU M, LI K Y, et al. Facile synthesis of morphology-and size-controlled zirconium metal-organic framework UiO-66: The role of hydrofluoric acid in crystallization[J]. CrystEngComm,2015,17(33):6434-6440. doi: 10.1039/C5CE00729A
    [29]
    RABIEE N, GHADIRI A M, ALINEZHAD V, et al. Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications[J]. Chemosphere,2022,299:134359. doi: 10.1016/j.chemosphere.2022.134359
    [30]
    曾胚羡. 基于UiO-66-NH2和聚丙烯酸钠自组装体构建双重响应载药体系的研究与应用[D]. 福州: 福州大学, 2017.

    ZENG Peixian. Application and research of double responsive drug delivery systems based on UiO-66-NH2 and sodium polyacrylate self-assemblies[D]. Fuzhou: Fuzhou University, 2017(in Chinese).
    [31]
    MULIK N, BOKADE V. Immobilization of HPW on UiO-66-NH2 MOF as efficient catalyst for synthesis of furfuryl ether and alkyl levulinate as biofuel[J]. Molecular Catalysis,2022,531:112689. doi: 10.1016/j.mcat.2022.112689
    [32]
    XU J, HE S, ZHANG H L, et al. Layered metal-organic framework/graphene nanoarchitectures for organic photosynthesis under visible light[J]. Journal of Materials Chemistry A,2015,3(48):24261-24271. doi: 10.1039/C5TA06838J
    [33]
    LIN Y M, QIU Z Z, LI D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries[J]. Energy Storage Materials,2018,11:67-74. doi: 10.1016/j.ensm.2017.06.001
    [34]
    CHEUNG Y H, MA K K, LEEUWEN H C V, et al. Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats[J]. Journal of the American Chemical Society,2021,143(40):16777-16785. doi: 10.1021/jacs.1c08576
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (798) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return