Volume 41 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
ZHOU Xueqiu, WANG Xikui, QIN Bingli, et al. Progress in the preparation and application of superamphiphobic surface[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5741-5758.
Citation: ZHOU Xueqiu, WANG Xikui, QIN Bingli, et al. Progress in the preparation and application of superamphiphobic surface[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5741-5758.

Progress in the preparation and application of superamphiphobic surface

Funds:  National Natural Science Foundation of China (No. 52205304); The Natural Science Special Program of Guizhou University for Special Post (Grant No. (2023) 25); Guizhou Science and Technology Innovation Base Construction project (Grant No.[2023]010).
  • Received Date: 2024-02-18
  • Accepted Date: 2024-04-20
  • Rev Recd Date: 2024-04-16
  • Available Online: 2024-05-28
  • Publish Date: 2024-11-15
  • Superhydrophobic / superoleophobic phenomenon in nature have attracted extensive attention from researchers in surface interface science, micro-nano manufacturing, nano coating and other fields, and have shown great application prospects in people's production and life. Based on the basic wettability theory, this paper introduces the main types of micro-nano rough structures on superoleophobic surfaces and the principle of reducing surface energy. The relationship between the micro-nano rough structure, chemical modification, and wettability also be explored, and the main methods for preparing superamphiphobic surfaces are summarized. Finally, the main applications status of the superamphiphobic surface are summarized, and the shortcomings and defects of the superamphiphobic surface are analyzed. Likewise, the future development direction of the superamphiphobic surface is prospected.

     

  • loading
  • [1]
    BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [2]
    FENG L, LI S, LI Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020
    [3]
    WISDOM K M, WATSON J A, QU X, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences, 2013, 110(20): 7992-7997. doi: 10.1073/pnas.1210770110
    [4]
    尧婉辰, 程静, 孙文文, 等. 仿生超疏水表面的生物医学应用进展[J]. 复合材料学报, 2023, 40(10): 5502-5517.

    YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517(in Chinese).
    [5]
    汪希奎, 苏一凡, 程真, 等. 基于多孔黏结层的超疏水复合涂层制备及其耐磨性研究[J]. 表面技术, 2023, 52(11): 63-71.

    WANG Xikui, SU Yifan, CHENG Zhen, et al. Fabrication and Wear Resistance of Robust Superhydrophobic Composite Coating Based on Porous Adhesive Layer[J]. Surface Technology, 2023, 52(11): 63-71(in Chinese).
    [6]
    ZHANG B, ZENG Y, WANG J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency[J]. Materials & Design, 2020, 188: 108479.
    [7]
    SHI T, WANG H, JIA Q, et al. Preparation of a transparent coating with superamphiphobic and antifouling properties[J]. Materials Chemistry and Physics, 2023, 293: 126888. doi: 10.1016/j.matchemphys.2022.126888
    [8]
    MEENA NARAYANA MENON D, GIARDINO M, JANNER D. Tunable pulsewidth nanosecond laser texturing: From environment friendly superhydrophobic to superamphiphobic surfaces[J]. Applied Surface Science, 2023, 610: 155356. doi: 10.1016/j.apsusc.2022.155356
    [9]
    梁雷, 王彦玲, 张杉. 超双疏含氟聚合物的研究进展[J]. 化工进展, 2020, 39(3): 1070-1079.

    LIANG Lei, WANG Yanling, ZHANG Shan. Research progress of super-amphiphobic fluoropolymers[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1070-1079(in Chinese).
    [10]
    REN G, QIAO Z, TUO Y, et al. Graded fillers method fabricating superamphiphobic coatings with high thermal conductivity, wear resistance and durable corrosion resistance[J]. Progress in Organic Coatings, 2024, 189: 108268. doi: 10.1016/j.porgcoat.2024.108268
    [11]
    WANG C, AN D, YANG T, et al. Self-cleaning and amphiphobic properties of octadecyltrichlorosilane self-assembled modified polytetrafluoroethylene films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133132. doi: 10.1016/j.colsurfa.2023.133132
    [12]
    LIU W, GUAN F, ZHANG F, et al. Fabrication of Bio-inspired Superamphiphobic Aluminum Alloy Surface with Oil-triggered Wenzel-Slippery Transition via Femtosecond Laser[J]. Journal of Bionic Engineering. 2024.
    [13]
    XIONG D, LIU G, HONG L, et al. Superamphiphobic Diblock Copolymer Coatings[J]. Chemistry of Materials, 2011, 23(19): 4357-4366. doi: 10.1021/cm201797e
    [14]
    LEE S Y, RAHMAWAN Y, YANG S. Transparent and Superamphiphobic Surfaces from Mushroom-Like Micropillar Arrays[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24197-24203.
    [15]
    TIAN X, JOKINEN V, LI J, et al. Unusual Dual Superlyophobic Surfaces in Oil–Water Systems: The Design Principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. doi: 10.1002/adma.201602714
    [16]
    WU Y, ZENG J, SI Y, et al. Large-Area Preparation of Robust and Transparent Superomniphobic Polymer Films[J]. ACS Nano, 2018, 12(10): 10338-10346. doi: 10.1021/acsnano.8b05600
    [17]
    LI Y, HE Y, LI J, et al. Design of robust superamphiphobic surfaces with enlarged area fractions: the considerable role of Laplace pressure in dynamics of contact lines[J]. Phys Chem Chem Phys, 2022, 24(16): 9308-9315. doi: 10.1039/D2CP00606E
    [18]
    DONG Z, LEVKIN P A. 3D Microprinting of Super-Repellent Microstructures: Recent Developments, Challenges, and Opportunities[J]. Advanced Functional Materials, 2023, n/a(n/a): 2213916.
    [19]
    YU F, WANG D, YANG J, et al. Durable Super-repellent Surfaces: From Solid–Liquid Interaction to Applications[J]. Accounts of Materials Research, 2021, 2(10): 920-932. doi: 10.1021/accountsmr.1c00147
    [20]
    CHEN D, GAO F, LIU T, et al. Fabrication of anti-fouling thin-film composite reverse osmosis membrane via constructing heterogeneous wettability surface[J]. Journal of Applied Polymer Science, 2021, 138(42): 51256. doi: 10.1002/app.51256
    [21]
    XIA B, LIU H, FAN Y, et al. Preparation of Robust CuO/TiO2 Superamphiphobic Steel Surface through Chemical Deposition and Sol–Gel Methods [J]. Advanced Engineering Materials, 2017, 19(2): 1600572. doi: 10.1002/adem.201600572
    [22]
    EMELYANENKO A M, BOINOVICH L B, BEZDOMNIKOV A A, et al. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24210-24219.
    [23]
    WANG Z, LIU X, JI J, et al. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48270-48280.
    [24]
    ZHANG B, XU W, ZHU Q, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corrosion Science, 2019, 158: 108083. doi: 10.1016/j.corsci.2019.06.031
    [25]
    ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Adv Colloid Interface Sci, 2017, 250: 132-157. doi: 10.1016/j.cis.2017.09.003
    [26]
    PENG J, YUAN S, GENG H, et al. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion[J]. Chemical Engineering Journal, 2022, 428: 131162. doi: 10.1016/j.cej.2021.131162
    [27]
    YANG S, WU C, ZHAO G, et al. Condensation frosting and passive anti-frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474. doi: 10.1016/j.xcrp.2021.100474
    [28]
    CHU Z, SEEGER S. Superamphiphobic surfaces[J]. Chemical Society reviews, 2014, 43(8): 2784-2798. doi: 10.1039/C3CS60415B
    [29]
    KANGO S, SINGH S, SHARMA N, et al. Recent advances in the mechanical durability of superamphiphobic surfaces: A review[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994-1996 (vols 208-210). 2021.
    [30]
    HUANG C, GUO Z. Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review[J]. Journal of Bionic Engineering, 2019, 16(5): 769-793. doi: 10.1007/s42235-019-0096-2
    [31]
    YAN X, JIN Y, CHEN X, et al. Nature-inspired surface topography: design and function[J]. Science China Physics, Mechanics & Astronomy. 2019, 63(2): 224601.
    [32]
    JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. doi: 10.1007/s11998-017-0011-x
    [33]
    LI Q, GUO Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581. doi: 10.1039/C8TA03259A
    [34]
    SEMPREBON C, MCHALE G, KUSUMAATMAJA H. Apparent contact angle and contact angle hysteresis on liquid infused surfaces[J]. Soft Matter, 2017, 13(1): 101-110. doi: 10.1039/C6SM00920D
    [35]
    PAN S, GUO R, BJöRNMALM M, et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials, 2018, 17(11): 1040-1047. doi: 10.1038/s41563-018-0178-2
    [36]
    YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [37]
    R N W. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem, 1936, 8: 988-994.
    [38]
    CASSIE A B S. Wettability of porous surfaces[J]. Trans. Faraday Soc, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [39]
    MILJKOVIC N, ENRIGHT R, WANG E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J]. ACS Nano, 2012, 6(2): 1776-1785. doi: 10.1021/nn205052a
    [40]
    WANG L, TIAN Z, JIANG G, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications. 2022, 13(1).
    [41]
    ZHANG X, GAN L, SUN B, et al. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications[J]. Science China Technological Sciences. 2022.
    [42]
    JIANG Y, LIAN J, JIANG Z, et al. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces[J]. Adv Colloid Interface Sci, 2020, 278: 102136. doi: 10.1016/j.cis.2020.102136
    [43]
    ZHANG K, LI Z, MAXEY M, et al. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition[J]. Langmuir, 2019, 35(6): 2431-2442. doi: 10.1021/acs.langmuir.8b03664
    [44]
    BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Adv Colloid Interface Sci, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [45]
    BOTTIGLIONE F, CARBONE G. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity[J]. Langmuir, 2013, 29(2): 599-609. doi: 10.1021/la304072p
    [46]
    MARMUR A. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?[J]. Langmuir, 2003, 19(20): 8343-8348. doi: 10.1021/la0344682
    [47]
    L F C G. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. J Colloid Sci, 1962, 4: 309-324.
    [48]
    BHUSHAN B. Bioinspired structured surfaces[J]. Langmuir, 2012, 28(3): 1698-1714. doi: 10.1021/la2043729
    [49]
    NGUYEN S H, WEBB H K, MAHON P J, et al. Natural insect and plant micro-/nanostructsured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties[J]. Molecules, 2014, 19(9): 13614-13630. doi: 10.3390/molecules190913614
    [50]
    SU Y, JI B, ZHANG K, et al. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces[J]. Langmuir, 2010, 26(7): 4984-4989. doi: 10.1021/la9036452
    [51]
    CHEN L, GUO Z, LIU W. Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air[J]. Journal of Materials Chemistry A, 2017, 5(28): 14480-14507. doi: 10.1039/C7TA03248J
    [52]
    LEE S Y, RAHMAWAN Y, YANG S. Transparent and Superamphiphobic Surfaces from Mushroom-Like Micropillar Arrays[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24197-24203.
    [53]
    FANG R, LIU M, LIU H, et al. Bioinspired Interfacial Materials: From Binary Cooperative Complementary Interfaces to Superwettability Systems[J]. Advanced Materials Interfaces, 2018, 5(3): 1701176. doi: 10.1002/admi.201701176
    [54]
    LI Y, HE Y, LI J, et al. Design of robust superamphiphobic surfaces with enlarged area fractions: the considerable role of Laplace pressure in dynamics of contact lines[J]. Physical Chemistry Chemical Physics, 2022, 24(16): 9308-9315. doi: 10.1039/D2CP00606E
    [55]
    WONG T, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. doi: 10.1038/nature10447
    [56]
    KOUHPOUR A, GOUDARZI S, ESLAMI R, et al. Micro-nano-engineered slippery liquid-infused porous surface coating with highly sustainable superhydrophobicity and omniphobicity[J]. Progress in Organic Coatings, 2024, 187: 108182. doi: 10.1016/j.porgcoat.2023.108182
    [57]
    LIU H, WANG Y, HUANG J, et al. Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications[J]. Advanced Functional Materials, 2018, 28(19): 1707415. doi: 10.1002/adfm.201707415
    [58]
    ZHANG D, WU G, LI H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion[J]. Chemical Engineering Journal, 2021, 406: 126753. doi: 10.1016/j.cej.2020.126753
    [59]
    TUTEJA A, CHOI W, MA M, et al. Designing Superoleophobic Surfaces[J]. Science, 2007, 318(5856): 1618-1622. doi: 10.1126/science.1148326
    [60]
    HEGNER K I, WONG W S Y, VOLLMER D. Ultrafast Bubble Bursting by Superamphiphobic Coatings[J]. Advanced Materials, 2021, 33(39): 2101855. doi: 10.1002/adma.202101855
    [61]
    LI F, DU M, ZHENG Q. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating[J]. ACS Nano, 2016, 10(2): 2910-2921. doi: 10.1021/acsnano.6b00036
    [62]
    ZHOU X, LIU J, LIU W, et al. Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures[J]. Advanced Materials, 2022, 34(10): 2107901. doi: 10.1002/adma.202107901
    [63]
    ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403. doi: 10.1016/j.cej.2020.125403
    [64]
    LI X, LI H, HUANG K, et al. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method[J]. Applied Surface Science, 2018, 436: 283-292. doi: 10.1016/j.apsusc.2017.11.241
    [65]
    ZHAO X, DUAN Y. Improve the mechanical durability of superhydrophobic/superamphiphobic coating through multiple cross-linked mesh structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128560. doi: 10.1016/j.colsurfa.2022.128560
    [66]
    FU Y, SOLDERA M, WANG W, et al. Wettability control of polymeric microstructures replicated from laser-patterned stamps[J]. Scientific Reports, 2020, 10(1): 22428. doi: 10.1038/s41598-020-79936-1
    [67]
    KANG S M, CHOI J S. Selective Liquid Sliding Surfaces with Springtail-Inspired Concave Mushroom-Like Micropillar Arrays[J]. Small, 2020, 16(3): 1904612. doi: 10.1002/smll.201904612
    [68]
    DAS R, AHMAD Z, NAURUZBAYEVA J, et al. Biomimetic Coating-free Superomniphobicity[J]. Scientific Reports. 2020, 10(1).
    [69]
    SUN J, ZHU P, YAN X, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 31403. doi: 10.1063/5.0056377
    [70]
    YUN G, JUNG W, OH M S, et al. Springtail-inspired superomniphobic surface with extreme pressure resistance[J]. Science Advances, 2018, 4(8): eaat4978. doi: 10.1126/sciadv.aat4978
    [71]
    HU S, CAO X, REDDYHOFF T, et al. Liquid repellency enhancement through flexible microstructures[J]. Science Advances, 2020, 6(32): eaba9721. doi: 10.1126/sciadv.aba9721
    [72]
    LIU X, GU H, WANG M, et al. 3D Printing of Bioinspired Liquid Superrepellent Structures[J]. Advanced Materials, 2018, 30(22): 1800103. doi: 10.1002/adma.201800103
    [73]
    TUOMINEN M, TEISALA H, HAAPANEN J, et al. Superamphiphobic overhang structured coating on a biobased material[J]. Applied Surface Science, 2016, 389: 135-143. doi: 10.1016/j.apsusc.2016.05.095
    [74]
    LIU Y, LU J, XUE W, et al. A strategy for fabricating multi-level micro-nano superamphiphobic surfaces by laser-electrochemistry subtractive-additive hybrid manufacturing method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 130946. doi: 10.1016/j.colsurfa.2023.130946
    [75]
    MAMMEN L, BLEY K, PAPADOPOULOS P, et al. Functional superhydrophobic surfaces made of Janus micropillars[J]. Soft Matter, 2015, 11(3): 506-515. doi: 10.1039/C4SM02216E
    [76]
    CHOI H, CHOO S, SHIN J, et al. Fabrication of Superhydrophobic and Oleophobic Surfaces with Overhang Structure by Reverse Nanoimprint Lithography[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24354-24359. doi: 10.1021/jp4070399
    [77]
    WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8
    [78]
    NEPAL D, KANG S, ADSTEDT K M, et al. Hierarchically structured bioinspired nanocomposites[J]. Nature Materials, 2023, 22(1): 18-35. doi: 10.1038/s41563-022-01384-1
    [79]
    CHEN J, LONG M, PENG S, et al. Superamphiphobic aluminum surfaces that maintain robust stability after undergoing severe chemical and physical damage[J]. New Journal of Chemistry, 2017, 41(3): 1334-1345. doi: 10.1039/C6NJ03696A
    [80]
    ZHAO D, PAN M, YUAN J, et al. A waterborne coating for robust superamphiphobic surfaces[J]. Progress in Organic Coatings, 2020, 138: 105368. doi: 10.1016/j.porgcoat.2019.105368
    [81]
    WANG L, WANG F, HUANG B, et al. Recent advances in superhydrophobic composites based on clay minerals[J]. Applied Clay Science, 2020, 198: 105793. doi: 10.1016/j.clay.2020.105793
    [82]
    SAJI V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2021, 9(3): 748-778. doi: 10.1016/j.jma.2021.01.005
    [83]
    RIESS J G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery[J]. Artif Cells Blood Substit Immobil Biotechnol, 2005, 33(1): 47-63. doi: 10.1081/BIO-200046659
    [84]
    BAO M, TIE L, LI J. Smart superamphiphobic surface manipulating wetting behaviors of oil droplet in water[J]. Tribology International, 2023, 179: 108189. doi: 10.1016/j.triboint.2022.108189
    [85]
    TEISALA H, GEYER F, HAAPANEN J, et al. Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Roll-Off Angle and High Impalement Pressure[J]. Advanced Materials, 2018, 30(14): 1706529. doi: 10.1002/adma.201706529
    [86]
    LIN J, PENG Z, LIU Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5(1): 5714. doi: 10.1038/ncomms6714
    [87]
    YE R, CHYAN Y, ZHANG J, et al. Laser-Induced Graphene Formation on Wood[J]. Advanced Materials, 2017, 29(37): 1702211. doi: 10.1002/adma.201702211
    [88]
    CHYAN Y, YE R, LI Y, et al. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539
    [89]
    KULYK B, PEREIRA S O, FERNANDES A J S, et al. Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine[J]. Carbon, 2022, 197: 253-263. doi: 10.1016/j.carbon.2022.06.013
    [90]
    CARVALHO A F, FERNANDES A J S, MARTINS R, et al. Laser-Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis[J]. Advanced Materials Technologies, 2020, 5(12): 2000630. doi: 10.1002/admt.202000630
    [91]
    ZHANG Q, XU P, PANG C, et al. A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating[J]. New Journal of Chemistry, 2022, 46(40): 19188-19197. doi: 10.1039/D2NJ03988E
    [92]
    SUN K, YANG H, XUE W, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel[J]. Applied Surface Science, 2018, 436: 263-267. doi: 10.1016/j.apsusc.2017.12.012
    [93]
    YUAN G, LIU Y, XIE F, et al. Fabrication of Superhydrophobic Gully-Structured Surfaces by Femtosecond Laser and Imprinting for High-Efficiency Self-Cleaning Rain Collection[J]. LANGMUIR, 2022, 38(8): 2720-2728. doi: 10.1021/acs.langmuir.1c03488
    [94]
    YANG Y, ZHANG Y, HU Y, et al. Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation[J]. Nano Letters, 2021, 21(21): 9301-9309. doi: 10.1021/acs.nanolett.1c03506
    [95]
    WANG T, ZHU H, ZHANG Z, et al. Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J]. Surfaces and Interfaces, 2021, 24: 101112. doi: 10.1016/j.surfin.2021.101112
    [96]
    赵美蓉, 周惠言, 康文倩, 等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379.

    ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379(in Chinese).
    [97]
    CHECCO A, RAHMAN A, BLACK C T. Robust Superhydrophobicity in Large-Area Nanostructured Surfaces Defined by Block-Copolymer Self Assembly[J]. Advanced Materials, 2014, 26(6): 886-891. doi: 10.1002/adma.201304006
    [98]
    SHAMSI A, AMIRI A, HEYDARI P, et al. Low cost method for hot embossing of microstructures on PMMA by SU-8 masters[J]. Microsystem Technologies, 2014, 20(10): 1925-1931.
    [99]
    TAN X, SHI T, LIN J, et al. One-Step Mask-Based Diffraction Lithography for the Fabrication of 3D Suspended Structures[J]. Nanoscale Research Letters, 2018, 13(1): 394. doi: 10.1186/s11671-018-2817-6
    [100]
    ABU JARAD N, IMRAN H, IMANI S M, et al. Fabrication of Superamphiphobic Surfaces via Spray Coating; a Review[J]. Advanced Materials Technologies, 2022, 7(10): 2101702. doi: 10.1002/admt.202101702
    [101]
    PENG J, ZHAO X, WANG W, et al. Durable Self-Cleaning Surfaces with Superhydrophobic and Highly Oleophobic Properties[J]. Langmuir. 2019.
    [102]
    DAS A, SCHUTZIUS T M, BAYER I S, et al. Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films[J]. Carbon, 2012, 50(3): 1346-1354. doi: 10.1016/j.carbon.2011.11.006
    [103]
    ZHU P, ZHU L, GE F, et al. Robust and transparent superamphiphobic coating prepared via layer-by-layer spraying[J]. Surface and Coatings Technology, 2021, 426: 127793. doi: 10.1016/j.surfcoat.2021.127793
    [104]
    LI J, XU L, YUAN X, et al. Preparation of robust and self-healing superamphiphobic cotton fabrics based on modified silica aerogel particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129634. doi: 10.1016/j.colsurfa.2022.129634
    [105]
    LIU L, PAN Y, BHUSHAN B, et al. Core-shell magnetic nanoparticles for substrate-Independent super-amphiphobic surfaces and mechanochemically robust liquid marbles[J]. Chemical Engineering Journal, 2020, 391: 123523. doi: 10.1016/j.cej.2019.123523
    [106]
    PENNA M O, SILVA A A, DO ROSáRIO F F, et al. Organophilic nano-alumina for superhydrophobic epoxy coatings[J]. Materials Chemistry and Physics, 2020, 255: 123543. doi: 10.1016/j.matchemphys.2020.123543
    [107]
    ZHANG J, LIU S, HUANG Y, et al. Durable fluorinated-SiO2/epoxy superhydrophobic coatings on polycarbonate with strong interfacial adhesion enhanced by solvent-induced crystallization[J]. Progress in Organic Coatings, 2021, 150: 106002. doi: 10.1016/j.porgcoat.2020.106002
    [108]
    WU B, LYU J, PENG C, et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness[J]. Chemical Engineering Journal, 2020, 387: 124066. doi: 10.1016/j.cej.2020.124066
    [109]
    YUAN G, LIU Y, XIE F, et al. Fabrication of Superhydrophobic Gully-Structured Surfaces by Femtosecond Laser and Imprinting for High-Efficiency Self-Cleaning Rain Collection[J]. Langmuir, 2022, 38(8): 2720-2728. doi: 10.1021/acs.langmuir.1c03488
    [110]
    ZHANG J, WEI J, LI B, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science, 2021, 594: 836-847. doi: 10.1016/j.jcis.2021.03.005
    [111]
    YANG Y, TU Y, GUI X, et al. Facile fabrication of wear-resistant, fluorine-free, strongly adhesive superhydrophobic coating based on modified SiO2/silicone nanocomposites[J]. Progress in Organic Coatings, 2023, 182: 107694. doi: 10.1016/j.porgcoat.2023.107694
    [112]
    WEI J, LI B, TIAN N, et al. Scalable Robust Superamphiphobic Coatings Enabled by Self-Similar Structure, Protective Micro-Skeleton, and Adhesive for Practical Anti-Icing of High-Voltage Transmission Tower[J]. Advanced Functional Materials, 2022, 32(43): 2206014. doi: 10.1002/adfm.202206014
    [113]
    ZHOU H, WANG H, NIU H, et al. Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. doi: 10.1002/adma.201200184
    [114]
    XIAO Z, XU D, ZHANG W, et al. Dip-coating of Superhydrophobic Surface on Irregular Substrates for Dropwise Condensation[J]. Journal of Bionic Engineering, 2021, 18(2): 387-397. doi: 10.1007/s42235-021-0024-0
    [115]
    LIAO K, ZHU J. Fabrication of superamphiphobic surface on Cu substrate via a novel and facile dip coating method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128379. doi: 10.1016/j.colsurfa.2022.128379
    [116]
    LI H, YU S, HAN X. Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 283: 1443-1454. doi: 10.1016/j.cej.2015.08.112
    [117]
    HE H, DU J, WENG Z, et al. One-step electrodeposition to fabricate superhydrophobic surfaces on flexible conductive films: Optimization of metallic compounds[J]. Materials Today Communications, 2023, 35: 105492. doi: 10.1016/j.mtcomm.2023.105492
    [118]
    KUANG Y, JIANG F, ZHU T, et al. One-step electrodeposition of superhydrophobic copper coating from ionic liquid[J]. Materials Letters, 2021, 303: 130579. doi: 10.1016/j.matlet.2021.130579
    [119]
    LIU Q, KANG Z. One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Materials Letters, 2014, 137: 210-213. doi: 10.1016/j.matlet.2014.09.010
    [120]
    ZHAO Z E, SUN S H, HU Y M, et al. Robust superamphiphobic aluminum surfaces: fabrication and investigation[J]. Journal of Coatings Technology and Research, 2019, 16(6): 1707-1714. doi: 10.1007/s11998-018-0143-7
    [121]
    ZHANG W, JOHNSON L, SILVA S R P, et al. The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes[J]. Applied Surface Science, 2012, 258(20): 8209-8213. doi: 10.1016/j.apsusc.2012.05.023
    [122]
    ZHANG L, UZOMA P C, XIAOYANG C, et al. Bio-Inspired Hierarchical Micro/Nanostructured Surfaces for Superhydrophobic and Anti-Ice Applications[J]. Frontiers in Bioengineering and Biotechnology. 2022, 10.
    [123]
    WECLAWSKI B T, HORROCKS A R, EBDON J R, et al. Combined atmospheric pressure plasma and UV surface functionalisation and diagnostics of nylon 6.6 fabrics[J]. Applied Surface Science, 2021, 562: 150090. doi: 10.1016/j.apsusc.2021.150090
    [124]
    MONTARSOLO A, VARESANO A, MOSSOTTI R, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect[J]. Journal of Applied Polymer Science, 2012, 126(4): 1385-1393. doi: 10.1002/app.36762
    [125]
    OH K W, KIM S H, KIM E A. Improved surface characteristics and the conductivity of polyaniline–nylon 6 fabrics by plasma treatment[J]. Journal of Applied Polymer Science, 2001, 81(3): 684-694. doi: 10.1002/app.1485
    [126]
    ZHOU Y, LIU Y, DU F. Rational fabrication of fluorine-free, superhydrophobic, durable surface by one-step spray method[J]. Progress in Organic Coatings, 2023, 174: 107227. doi: 10.1016/j.porgcoat.2022.107227
    [127]
    LINSHA V, MAHESH K V, ANAS S, et al. Synthesis of organotrimethoxy silane modified alumino-siloxane hybrid gels: Physico-chemical properties evaluation and design of superhydrophobic smart powders and coatings[J]. Materials Chemistry and Physics, 2022, 278: 125587. doi: 10.1016/j.matchemphys.2021.125587
    [128]
    LIN D, ZENG X, LI H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. doi: 10.1016/j.jcis.2018.08.060
    [129]
    ASLAN çAKıR M, YETIM T, YETIM A, et al. Superamphiphobic TiO2 Film by Sol–Gel Dip Coating Method on Commercial Pure Titanium[J]. Journal of Materials Engineering and Performance. 2023.
    [130]
    WEI J, LI B, JING L, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating[J]. Chemical Engineering Journal, 2020, 390: 124562. doi: 10.1016/j.cej.2020.124562
    [131]
    LIU X, HE H, ZHANG T C, et al. Superhydrophobic and self-healing dual-function coatings based on mercaptabenzimidazole inhibitor-loaded magnesium silicate nanotubes for corrosion protection of AZ31B magnesium alloys[J]. Chemical Engineering Journal, 2021, 404: 127106. doi: 10.1016/j.cej.2020.127106
    [132]
    ZHANG B, YAN J, LI X, et al. Self-cleaning and corrosion-resistant superamphiphobic coating with super-repellency towards low-surface-tension liquids[J]. Journal of Materials Research and Technology, 2023, 23: 1094-1104. doi: 10.1016/j.jmrt.2023.01.078
    [133]
    NAWAZ T, ALI A, AHMAD S, et al. Enhancing Anticorrosion Resistance of Aluminum Alloys Using Femtosecond Laser-Based Surface Structuring and Coating[Z]. 2023: 13.
    [134]
    LIU X, CHEN J, SHAO Q, et al. Robust, flame-retardant and colorful superamphiphobic aramid fabrics for extreme conditions[J]. Science China Technological Sciences, 2021, 64(8): 1765-1774. doi: 10.1007/s11431-020-1781-y
    [135]
    JIAO X, LI M, YU X, et al. Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency[J]. Chemical Engineering Journal, 2021, 420: 127606. doi: 10.1016/j.cej.2020.127606
    [136]
    LASFAR S, HAIDARA F, MAYOUF C, et al. Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott[J]. Energy for Sustainable Development, 2021, 63: 7-15. doi: 10.1016/j.esd.2021.05.002
    [137]
    ZHANG H, HUANG J, FAN D. Switchable Radiative Cooling from Temperature-Responsive Thermal Resistance Modulation[J]. ACS Applied Energy Materials, 2022, 5(5): 6003-6010. doi: 10.1021/acsaem.2c00421
    [138]
    LIU L, ZHANG H, CAI Y, et al. Super-amphiphobic coatings with sub-ambient daytime radiative cooling—Part 2: Cooling effect under real conditions[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111736. doi: 10.1016/j.solmat.2022.111736
    [139]
    王威, 余新泉, 张友法. 仿蝉翼超疏水疏油玻璃防指纹特性研究[J]. 表面技术, 2021, 50(10): 40-47.

    WANG Wei, YU Xinquan, ZHANG Youfa. Study on Anti-fingerprint Properties of Biomimetic Cicada-wing Superhydro(oleo)phobic Glass[J]. Surface Technology, 2021, 50(10): 40-47(in Chinese).
    [140]
    WANG P, ZHANG L, HU Z, et al. Transparent and anti-fingerprint coating prepared with chitin nanofibers and surface modification via vapor deposition[J]. Progress in Organic Coatings, 2022, 172: 107126. doi: 10.1016/j.porgcoat.2022.107126
    [141]
    WANG G, WANG H, GUO Z. A robust transparent and anti-fingerprint superhydrophobic film[J]. Chemical Communications, 2013, 49(66): 7310-7312. doi: 10.1039/c3cc43677b
    [142]
    CHANSOMWONG K, KIM Y H, LEE H, et al. Facile preparation of wear-resistant and anti-fingerprint hard coating with chemisorption of fluorosilane by simple wet coating[J]. Journal of Sol-Gel Science and Technology, 2020, 95(2): 447-455. doi: 10.1007/s10971-020-05294-z
    [143]
    CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections[J]. Nanomaterials (Basel). 2021, 11(4).
    [144]
    ZHANG J, YANG J, LI Q, et al. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiOx particles and their anti-biofilm mechanism[J]. Biomaterials Science, 2021, 9(22): 7504-7521. doi: 10.1039/D1BM01285A
    [145]
    LI M, YANG T, YANG Q, et al. Slippery quartz surfaces for anti-fouling optical windows[J]. Droplet, 2023, 2(1): e41. doi: 10.1002/dro2.41
    [146]
    DOTTO M E R, MARTINS R N, FERREIRA M, et al. Influence of hydrogenated amorphous carbon coatings on the formation of paraffin deposits[J]. Surface and Coatings Technology, 2006, 200(22): 6479-6483.
    [147]
    YANG F, ZHU H, LI C, et al. Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108723. doi: 10.1016/j.petrol.2021.108723
    [148]
    LIU Z, YUXING L, WANG W, et al. Wax and Wax–Hydrate Deposition Characteristics in Single-, Two-, and Three-Phase Pipelines: A Review[J]. Energy & Fuels, 2020, 34: 13350-13368.
    [149]
    HUANG Z, LU Y, HOFFMANN R, et al. The Effect of Operating Temperatures on Wax Deposition[J]. Energy & Fuels, 2011, 25(11): 5180-5188.
    [150]
    SOUSA A M, MATOS H A, GUERREIRO L. Wax deposition mechanisms and the effect of emulsions and carbon dioxide injection on wax deposition: Critical review[J]. Petroleum, 2020, 6(3): 215-225. doi: 10.1016/j.petlm.2019.09.004
    [151]
    WANG Z, ZHU L, LI W, et al. Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10904-10911.
    [152]
    LIANG W, ZHU L, LI W, et al. Bioinspired Composite Coating with Extreme Underwater Superoleophobicity and Good Stability for Wax Prevention in the Petroleum Industry[J]. Langmuir, 2015, 31(40): 11058-11066. doi: 10.1021/acs.langmuir.5b03234
    [153]
    WU Y, ZHAO M, GUO Z. Multifunctional superamphiphobic SiO2 coating for crude oil transportation[J]. Chemical Engineering Journal, 2018, 334: 1584-1593. doi: 10.1016/j.cej.2017.11.080
    [154]
    GENG H, PENG J, YUAN S, et al. Bioinspired Hybrid Nanostructures for Wax Inhibition Coatings with Superhydrophilicity[J]. ACS Applied Nano Materials. 2021, 4.
    [155]
    LIANG W, ZHU L, XU C, et al. Ecologically friendly conversion coatings with special wetting behaviors for wax prevention[J]. RSC Advances, 2016, 6(31): 26045-26054. doi: 10.1039/C6RA00611F
    [156]
    SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. doi: 10.1016/j.pmatsci.2019.03.004
    [157]
    李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.

    LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese).
    [158]
    SHI X, VENEZIANO D, XIE N, et al. Use of chloride-based ice control products for sustainable winter maintenance: A balanced perspective[J]. Cold Regions Science and Technology, 2013, 86: 104-112. doi: 10.1016/j.coldregions.2012.11.001
    [159]
    PENG C, YU J, ZHAO Z, et al. Synthesis and Properties of a Clean and Sustainable Deicing Additive for Asphalt Mixture[J]. PLOS ONE, 2015, 10(1): e0115721. doi: 10.1371/journal.pone.0115721
    [160]
    ZHENG W, TENG L, LAI Y, et al. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J]. Chemical Engineering Journal, 2022, 427: 130922. doi: 10.1016/j.cej.2021.130922
    [161]
    TOURKINE P, LE MERRER M, QUéRé D. Delayed Freezing on Water Repellent Materials[J]. Langmuir : the ACS journal of surfaces and colloids. 2009, 25: 7214-7216.
    [162]
    武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775.
    [163]
    WEI J, LIANG W, ZHANG J. Preparation of Mechanically Stable Superamphiphobic Coatings via Combining Phase Separation of Adhesive and Fluorinated SiO2 for Anti-Icing[Z]. 2023: 13.
    [164]
    EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9): 4874-4881. doi: 10.1039/C3NR06644D
    [165]
    FLETCHER N H. Size Effect in Heterogeneous Nucleation[J]. The Journal of Chemical Physics, 2004, 29(3): 572-576.
    [166]
    BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Modus Operandi of Protective and Anti-icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings[J]. ACS Nano, 2019, 13(4): 4335-4346. doi: 10.1021/acsnano.8b09549
    [167]
    WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. J Colloid Interface Sci, 2021, 590: 301-310. doi: 10.1016/j.jcis.2021.01.054
    [168]
    LI W, ZHAN Y, YU S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. doi: 10.1016/j.porgcoat.2020.106117
    [169]
    JUNG S, DORRESTIJN M, RAPS D, et al. Are Superhydrophobic Surfaces Best for Icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066. doi: 10.1021/la104762g
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (226) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return