Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Daijun, BAO Jianwen, ZHONG Xiangyu, et al. Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004
Citation: ZHANG Daijun, BAO Jianwen, ZHONG Xiangyu, et al. Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004

Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric

doi: 10.13801/j.cnki.fhclxb.20210909.004
  • Received Date: 2021-07-26
  • Accepted Date: 2021-08-27
  • Rev Recd Date: 2021-08-18
  • Available Online: 2021-09-09
  • Publish Date: 2022-08-31
  • To improve the compression strength after impact of epoxy-based composites, polyethersulfone (PES) ultrafine-fiber non-woven fabric was fabricated from polyethersulfone-Nylon 6 (PES-PA6) blended fibers using solution-stripping method, which is more suitable for batch preparation. Then the obtained non-woven fabric was applied in the interlaminar toughing of carbon fiber reinforced epoxy resin-based composites. Interlaminar fracture toughness under mode I (GIC), interlaminar fracture toughness under mode II (GIIC), compressive strength after impact (CAI) and interlaminar fracture micro-morphology of composites were tested to research the influence of the non-woven fabric on the interlaminar toughness of composites and the corresponding mechanism of interla-minar toughing. The result indicates that after epoxy resin-based composites are interlaminate-toughened with the non-woven fabric, the GIC value is raised to 312 J/m2 from 289 J/m2 and GIIC value is improved to 3649 J/m2 from 1391 J/m2. Also, the post-impact damage area of tested specimens is reduced from 1050 mm2 to 204 mm2 after toughing treatment, and the corresponding post-impact compressive strength is increased from 228 MPa to 307 MPa.

     

  • loading
  • [1]
    陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12.

    CHEN Xiangbao, ZHANG Baoyan, XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12(in Chinese).
    [2]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [3]
    马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Appli-cation of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [4]
    ENDO M. Composites for aircraft and aerospace application[J]. Sen'I Gakkaishi,2014,70(9):508-511. doi: 10.2115/fiber.70.P-508
    [5]
    包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO Jianwen, ZHONG Xiangyu, ZHANG Daijun, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering,2020,48(8):33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [6]
    陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. doi: 10.3321/j.issn:1000-6893.2008.03.011

    CHEN Shaojie. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautic Sinica,2008,29(3):605-610(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.011
    [7]
    刘代军, 陈亚莉. 先进树脂基复合材料在航空工业中的应用[J]. 材料工程, 2008(S1):194-198.

    LIU Daijun, CHEN Yali. Application of advanced polymer matrix composites in aviation industry[J]. Journal of Materials Engineering,2008(S1):194-198(in Chinese).
    [8]
    乔海涛, 梁滨, 张军营, 等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12):38-47. doi: 10.11868/j.issn.1001-4381.2018.000297

    QIAO Haitao, LIANG Bin, ZHANG Junying, et al. Development and application of adhesive materials for advanced composite bonding[J]. Journal of Materials Engineering,2018,46(12):38-47(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000297
    [9]
    张宗华, 刘刚, 张晖, 等. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014(9):39-44. doi: 10.11868/j.issn.1001-4381.2014.09.007

    ZHANG Zonghua, LIU Gang, ZHANG Hui, et al. Influence of nano-alumina particles on glass transition temperature of high-performance epoxy resin[J]. Journal of Materials Engineering,2014(9):39-44(in Chinese). doi: 10.11868/j.issn.1001-4381.2014.09.007
    [10]
    刘刚, 张代军, 张晖, 等. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010(1):47-53. doi: 10.3969/j.issn.1001-4381.2010.01.011

    LIU Gang, ZHANG Daijun, ZHANG Hui, et al. Mechanical properties of nanoparticles modified epoxy matrix and composites[J]. Journal of Materials Engineering,2010(1):47-53(in Chinese). doi: 10.3969/j.issn.1001-4381.2010.01.011
    [11]
    董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285.

    DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(2):273-285(in Chinese).
    [12]
    姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [13]
    张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012 , 29(4):1-9.

    ZHANG Peng, LIU Gang, HU Xiaolan, et al. Properties of toughened RTM composites by structural toughening layer[J]. Acta Materiae Compositae Sinica,2012 , 29(4):1-9(in Chinese).
    [14]
    董慧民, 闫丽, 安学锋, 等. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1):41-47. doi: 10.11868/j.issn.1001-4381.2018.000960

    DONG Huimin, YAN Li, AN Xuefeng, et al. Low velocity impact response and post impact compression behaviour of ESTM-fabric/3266 composites[J]. Journal of Materials Engineering,2020,48(1):41-47(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000960
    [15]
    BRUGO T, MINAK G, ZUCCHELLI A, et al. An investigation on the fatigue based delamination of woven carbon-epoxy composite laminates reinforced with polyamide nano-fibers[J]. Procedia Engineering,2015,109:65-72. doi: 10.1016/j.proeng.2015.06.208
    [16]
    SHIVAKUMAR K, LINGAIAH S, CHEN H, et al. Polymer nanofabric interleaved composite laminates[J]. AIAA Journal,2009,47(7):1723-1729.
    [17]
    DAELEMANS L, SAM V, DE B I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite lami-nates interleaved with electrospun polyamide nano-fibrous veils[J]. Composites Science and Technology,2015,117:244-256. doi: 10.1016/j.compscitech.2015.06.021
    [18]
    American Society for Testing and Materials. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D 5528[S]. West Conshohocken: American Society for Testing and Materials International, 2009.
    [19]
    中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—96[S]. 北京: 中国航空工业总公司, 1997.

    Aviation Industry Corporation of China. Test method for mode II interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: HB 7403—96[S]. Beijing: Aviation Industry Corporation of China, 1997(in Chinese).
    [20]
    American Society for Testing and Materials. Standard test for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D 7136[S]. West Conshohocken: American Society for Testing and Materials International, 2020.
    [21]
    American Society for Testing and Materials. Standard test method I for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D 7137[S]. West Conshohocken: American Society for Testing and Materials International, 2017.
    [22]
    VOLKER A, DALE G, MICHAEL S, et al. Interlaminar crack growth in third-generation thermoset prepreg system[J]. Polymer,1993,34(4):907-909. doi: 10.1016/0032-3861(93)90379-O
    [23]
    RECKER H, ALTSTADT V, EBERLE W, et al. Toughened thermosets for damage tolerant carbon fiber reinforced composites[J]. SAMPE Journal, 1990, 26(2): 73-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (1063) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return