Volume 38 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004
Citation: HUANG Wenyi, JIANG Hongjie, WANG Yibo, et al. Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4220-4227. doi: 10.13801/j.cnki.fhclxb.20210309.004

Microstructure and damping capacity of 7075 aluminum matrix composite enhanced by 6061 aluminum particles layer

doi: 10.13801/j.cnki.fhclxb.20210309.004
  • Received Date: 2020-12-15
  • Accepted Date: 2021-02-09
  • Available Online: 2021-03-10
  • Publish Date: 2021-12-01
  • The 6061p/7075 aluminum matrix (6061p/7075Al) composite with particles layer structure was prepared by hot rolling to improve the damping capacity of 7075 aluminum alloy. The microstructure of 6061p/7075Al layered composites was analyzed by OM, SEM, EDS and XRD, the mechanical properties and damping behavior of the 6061p/7075Al layered composites were analyzed by universal mechanical testing machine and dynamic thermo-mechanical analyzer respectively. The results show that there are a large number of interparticle interfaces and micro-pores in the 6061 aluminum particles layer, and the interface between the 6061 aluminum particles layer and the 7075 aluminum matrix is well combined without interface reaction. The internal friction of 6061p/7075Al layered composites and matrix material increases with the increase of temperature and strain variables, respectively. The damping capacity of the 6061p/7075Al layered composites is obviously better than that of 7075 aluminum matrix. At 360℃, the internal friction of 6061p/7075Al layered composites is as high as 0.117, which is 149% higher than that of 7075 aluminum matrix. The storage modulus of 6061p/7075Al layered composites and matrix material decreases with the increase of temperature and strain variables, respectively. At 30℃, the storage modulus of the 6061p/7075Al layered composites is 38601 MPa, which is 16% higher than that of 7075 aluminum matrix.

     

  • loading
  • [1]
    FU J, WANG S, WANG K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state[J]. Journal of Materials Science,2018,53(13):9790-9805. doi: 10.1007/s10853-018-2246-z
    [2]
    ZHOU P, SONG Y, HUA L, et al. Mechanical behavior and deformation mechanism of 7075 aluminum alloy under solution induced dynamic strain aging[J]. Materials Science and Engineering A,2019,759:498-505. doi: 10.1016/j.msea.2019.05.071
    [3]
    JIANG H J, CHEN Y, LIU C Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234
    [4]
    马绪强, 苏正涛. 结构阻尼混杂复合材料研究进展[J]. 宇航材料工艺, 2020, 50(6):5-11.

    MA X Q, SU Z T. Research progress of structural damping hybrid composites[J]. Aerospace Materials and Technology,2020,50(6):5-11(in Chinese).
    [5]
    ZHANG Z, ZHANG X, HE D. Forming and warm die quenching process for AA7075 aluminum alloy and its application[J]. Journal of Materials Engineering and Performance,2020,29:620-625. doi: 10.1007/s11665-019-04545-7
    [6]
    JIANG H J, LIU C Y, ZHANG B, et al. Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Materials Characterization,2017,131:425-430. doi: 10.1016/j.matchar.2017.07.037
    [7]
    CHEN Y, LIU C Y, ZHANG B, et al. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties and damping capacity of 7055 Al alloy[J]. Materials Characterization,2017,135:25-31.
    [8]
    JIANG H J, LIU C Y, YANG Z X, et al. Effect of friction stir processing on the microstructure, damping capacity and mechanical properties of Al-Si Alloy[J]. Journal of Materials Engineering and Performance,2019,28:1173-1179. doi: 10.1007/s11665-018-3844-2
    [9]
    张忠明, 胡博, 高峰涛, 等. 往复挤压法制备Al2O3P/Al复合材料的室温阻尼性能[J]. 复合材料学报, 2011, 28(4):130-135.

    ZHANG Z M, HU B, GAO F T, et al. Room temperature damping properties of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135(in Chinese).
    [10]
    GAO Y X, WANG X P, JIANG W B, et al. High damping capacity and low density M2052/Al composites fabricated by accumulative roll bonding[J]. Journal of Alloys and Compounds,2018,757:415-422. doi: 10.1016/j.jallcom.2018.05.104
    [11]
    YE T, XU Y, REN J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite[J]. Materials Science and Engineering A,2019,753:146-155. doi: 10.1016/j.msea.2019.03.037
    [12]
    LIU C G, YU L M, MA Z Q, et al. Damping capacity of Al-12Si composites effected by negative thermal expansion of Y2W3O12 particle inclusions[J]. Journal of Materials Research and Technology,2020,9(5):9985-9995. doi: 10.1016/j.jmrt.2020.07.008
    [13]
    陈东, 乐永康, 白亮, 等. 原位TiB2/7055铝基复合材料的力学性能与阻尼性能[J]. 功能材料, 2006, 10:1599-1602.

    CHEN D, LE Y K, BAI L, et al. Mechanical and damping properties of in-situ TiB2/7055 aluminum matrix compo-sites[J]. Functional Materials,2006,10:1599-1602(in Chinese).
    [14]
    CARVALHO O, MIRANDA G, BUCIUMEANU M, et al. High temperature damping behavior and dynamic Young’s modulus of AlSi-CNT-SiCp hybrid composite[J]. Compo-site Structures,2016,141:155-162. doi: 10.1016/j.compstruct.2016.01.046
    [15]
    CHEN H M, GUO W P, LIU Z M, et al. Interface and damping capacity of Mg/Al multilayered composite produced by accumulative roll bonding[J]. Materials Science Forum,2016,849:838-843. doi: 10.4028/www.scientific.net/MSF.849.838
    [16]
    ZHENG W, GAO Y X, WANG X P, et al. High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding[J]. Materials Science and Engineering A,2017,689:306-312. doi: 10.1016/j.msea.2017.02.074
    [17]
    WU C, WU J, MA K, et al. Synthesis of AA7075-AA7075/B4C bilayer composite with enhanced mechanical strength via plasma activated sintering[J]. Journal of Alloys and Compounds,2017,701:416-424. doi: 10.1016/j.jallcom.2017.01.065
    [18]
    王健, 郑学丰, 付昌云, 等. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794.

    WANG J, ZHENG X F, FU C Y, et al. Deep drawing characteristics of carbon fiber/epoxy resin composite-aluminum alloy laminated sheet[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese).
    [19]
    王振军, 田亮, 蔡长春, 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为[J]. 中国有色金属学报, 2019, 29(3):458-466.

    WANG Z J, TIAN L, CAI C C, et al. Progressive damage and elastoplastic mechanical behavior of CF/Al composites by transverse tensile[J]. The Chinese Journal of Nonferrous Metals,2019,29(3):458-466(in Chinese).
    [20]
    刘玲, 黄争鸣, 周烨欣, 等. 超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J]. 复合材料学报, 2007, 24(4):166-171.

    LIU L, HUANG Z M, ZHOU Y X, et al. Mode I interlaminar fracture toughness analysis of microfiber reinforced composites[J]. Acta Materiae Compositae Sinica,2007,24(4):166-171(in Chinese).
    [21]
    ZHANG X, YU Y, LIU B, et al. Mechanical properties and tensile fracture mechanism investigation of Al/Cu/Ti/Cu/Al laminated composites fabricated by rolling[J]. Journal of Alloys and Compounds,2019,805:338-345. doi: 10.1016/j.jallcom.2019.07.064
    [22]
    WEI J N, GONG C L, CHENG H F, et al. Low-frequency damping behavior of foamed commercially pure aluminum[J]. Materials Science and Engineering A,2002,332(1):375-381.
    [23]
    JIANG H J, ZHANG B, LIU C Y, et al. Mechanical and damping behavior of age-hardened and non-age-hardened Al alloys after friction stir processing[J]. Acta Metallurgica Sinica (English Letters),2019,32(9):1135-1141. doi: 10.1007/s40195-019-00905-3
    [24]
    GOLOVIN I S, SINNING H R, GOKEN J, et al. Fatigue-related damping in some cellular metallic materials[J]. Materials Science and Engineering A,2004,370:537-541. doi: 10.1016/j.msea.2003.08.090
    [25]
    KATONA B, SZLANCSIK A, TABI T, et al. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams[J]. Materials Science and Engineering A,2019,739:140-148. doi: 10.1016/j.msea.2018.10.014
    [26]
    LOPERA H A C, SALVA H R, ROLDAN C C, et al. Internal friction and shear modulus of Ti32Zr18Ni50 hydrogen storage alloy[J]. Materials Science and Technology,2013,21(2):191-196.
    [27]
    NI N, WEN Y, HE D, et al. Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics[J]. Materials and Design,2016,94:377-383. doi: 10.1016/j.matdes.2015.12.159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1593) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return