Volume 39 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008
Citation: ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285. doi: 10.13801/j.cnki.fhclxb.20220809.008

Advance in continuous carbon fiber reinforced high performance thermoplastic composites

doi: 10.13801/j.cnki.fhclxb.20220809.008
  • Received Date: 2022-06-09
  • Accepted Date: 2022-07-26
  • Rev Recd Date: 2022-07-11
  • Available Online: 2022-08-09
  • Publish Date: 2022-08-22
  • With excellent mechanical properties, low hygroscopicity, good chemical resistance, short molding cycle and convenience to be reformed, continuous carbon fiber reinforced high-performance thermoplastic composites are widely used in aerospace and other high-tech fields. The interfacial problems, prepreg preparation and compo-site molding in the research of continuous carbon fiber reinforced high-performance thermoplastic composites were introduced. The reference for the domestic application research of this kind of composites is expected to be provided.

     

  • loading
  • [1]
    常保宁. 碳纤维增强高性能热塑性复合材料本构模型与增材制造工艺研究[D]. 大连: 大连理工大学, 2020.

    CHANG B N. Constitutive model and additive manufacturing of carbon fiber reinforced high performance thermoplastic composites[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [2]
    张涵其. CF/PEEK热塑性复合材料热成型及热变形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHANG Hanqi. Study on thermal forming andthermal deformation of CF/PEEK thermoplastic composites[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [3]
    LIU D, ZHU Y, DING J, et al. Experimental investigation of carbon fiber reinforced poly(phenylene sulfide) compo-sites prepared using a double-belt press[J]. Composites Part B: Engineering,2015,77:363-370.
    [4]
    邢开, 徐海兵, 颜春, 等. 碳纤维增强高性能热塑性复合材料界面改性的研究进展[J]. 复合材料科学与工程, 2019(5):110-115. doi: 10.3969/j.issn.1003-0999.2019.05.019

    XING Kai, XU Haibing, YAN Chun, et al. Research progress in interface modification of carbon fiber reinforced high performance thermoplastic composites[J]. Composites Science and Engineering,2019(5):110-115(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.05.019
    [5]
    ZHENG H, ZHANG W J, LI B W, et al. Recent advances of interphases in carbon fiber-reinforced polymer compo-sites: A review[J]. Composites Part B: Engineering,2022,233:109639.
    [6]
    战奕凯, 赵潜, 杜帅, 等. 东丽碳纤维不同去浆处理条件下的性能分析[J]. 贵州大学学报(自然科学版), 2019, 36(6):32-36.

    ZHAN Yikai, ZHAO Qian, DU Shuai, et al. Performance analysis of Toray carbon fiber under different desizing conditions[J]. Journal of Guizhou University (Natural Science),2019,36(6):32-36(in Chinese).
    [7]
    CHEN F, LIU X F, LIU H S, et al. Improved interfacial performance of carbon fiber/polyetherimide composites by polyetherimide and modified graphene oxide complex emulsion type sizing agent[J]. High Performance Polymers,2022,34(3):292-309. doi: 10.1177/09540083211053742
    [8]
    LYU H X, JIANG N Y, LI Y Z, et al. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2021,145(6):10636.
    [9]
    YANG Y C, WANG T J, WANG S D, et al. Strong interface construction of carbon fiber-reinforced PEEK composites: An efficient method for modifying carbon fiber with crystalline PEEK[J]. Macromolecular Rapid Communications, 2020, 41(24): 2000001.
    [10]
    LIU H S , ZHAO Y, LI N, et al. Effect of polyetherimide sizing on surface properties of carbon fiber and interfacial strength of carbon fiber/polyetheretherketone compo-sites[J]. Polymer Composites,2020,42(2):931-943.
    [11]
    CHEN J L, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology,2018,154:175-186. doi: 10.1016/j.compscitech.2017.11.005
    [12]
    LIU H S, ZHAO Y, LI N, et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology,2019,8(6):6289-6300. doi: 10.1016/j.jmrt.2019.10.022
    [13]
    LIU H S, ZHAO Y, CHEN F, et al. Effects of polyetherimide sizing involving carbon nanotubes on interfacial perfor-mance of carbon fiber/polyetheretherketone composites[J]. Polymers for Advanced Technologies,2021,32(9):3689-3700. doi: 10.1002/pat.5389
    [14]
    滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2):42-53. doi: 10.11868/j.issn.1001-4381.2020.000358

    TENG Linghong, CAO Weiwei, ZHU Bo, et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Materials Engineering,2021,49(2):42-53(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000358
    [15]
    杨洋, 徐捷, 原崇新, 等. 连续纤维增强聚苯硫醚预浸料自动铺丝工艺与热塑性复合材料性能研究[J]. 纤维复合材料, 2020, 37(1):3-9. doi: 10.3969/j.issn.1003-6423.2020.01.001

    YANG Yang, XU Jie, YUAN Chongxin, et al. Study on automatic fiber placement technology with continuous carbon fiber reinforced polyphenylene sulfide prepreg and characterization of the thermoplastic composites[J]. Fiber Composites,2020,37(1):3-9(in Chinese). doi: 10.3969/j.issn.1003-6423.2020.01.001
    [16]
    李林秀, 岳广全, 杨洋, 等. 连续碳纤维增强聚苯硫醚预浸料层间滑移行为研究[J]. 复合材料科学与工程, 2021(2):24-31.

    LI Linxiu, YUE Guangquan, YANG Yang, et al. Research on interlayer slip behavior of continuous carbon fiber reinforced polyphenylene sulfide prepreg[J]. Composites Science and Engineering,2021(2):24-31(in Chinese).
    [17]
    许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8):123-128. doi: 10.3969/j.issn.1003-0999.2020.08.019

    XU Yunpeng, YAN Chun, LIU Dong, et al. Progress in preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering,2020(8):123-128(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.08.019
    [18]
    SONG J P, ZHAO Y, XIONG S, et al. The synergistic steric hindrance effect in the preparation of polyether ether ketone composites by powder slurry method[J]. Polymer Composites,2022,43(4):2384-2395. doi: 10.1002/pc.26548
    [19]
    CHEN J L, WANG K, DONG A Q, et al. A comprehensive study on controlling the porosity of CCF300/PEEK compo-sites by optimizing the impregnation parameters[J]. Polymer Composites,2018,39(10):3765-3779. doi: 10.1002/pc.24407
    [20]
    KHURSHID M F, HENGSTERMANN M, HASAN M M B, et al. Recent developments in the processing of waste carbon fibre for thermoplastic composites-A review[J]. Journal of Composite Materials,2020,54(14):1925-1944. doi: 10.1177/0021998319886043
    [21]
    SANTOS A C M Q S, MONTICELI F M, ORNAGHI H, et al. Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding[J]. Polymers and Polymer Composites,2021,29(8):1353-1362.
    [22]
    MA Y Q, ZHAO Y T, ZHANG Y, et al. Influence of infiltration pressure on the microstructure and properties of 2D-CFRP prepared by the vacuum infiltrationhot pressing molding process[J]. Polymers, 2019, 11(12): 2014.
    [23]
    TAKAHASHI Y, URIYA Y, YANAGIMOTO J. Optimum design of formable CFRP sheets by generic algorithm and FE analysis by homogenization of multilayered structure with macroscopic anisotropy[J]. International Journal of Material Forming,2016,9(5):697-703. doi: 10.1007/s12289-015-1260-9
    [24]
    SUN G Y, KONG X R, WANG Z, et al. Experimental investi-gation into stamping of woven CF/PP laminates: Influences of molding temperature on thermal, mesoscopic and macroscopic properties[J]. Composite Structrues,2021,263:113507.
    [25]
    LU Y, LI Y B, ZHANG Y, et al. Manufacture of Al/CF/PEEK curved beams by hot stamping forming process[J/OL]. Materials and Manufacturing Processes, (2022-02-10) [2022-06-0]. DOI: 10.1080/10426914.2022.2032140.
    [26]
    李林秀. 热塑性复合材料热冲压成型褶皱缺陷的形成机理研究[D]. 上海: 东华大学, 2020.

    LI Linxiu. Study on the formation mechanism of wrinkle defects in hot stamping of thermoplastic composites[D]. Shanghai: Donghua University, 2020(in Chinese).
    [27]
    纪朝辉, 王宏洋, 孙凌丰, 等. PPS/CF复合材料电阻焊接工艺及性能评价[J]. 焊接学报, 2020, 41(3):80-85, 101.

    JI Chaohui, WANG Hongyang, SUN Lingfeng, et al. Study on resistance welding process of PPS/CF composite[J]. Transactions of the China Welding Institution,2020,41(3):80-85, 101(in Chinese).
    [28]
    赵普. 热塑性航空复合材料电阻焊接界面增强设计及机理[D]. 沈阳: 沈阳航空航天大学, 2020.

    ZHAO Pu. Design and mechanism of resistance welding interface enhancemen thermoplastic aerospace composites[D]. Shenyang: Shenyang Aerospace University, 2020(in Chinese).
    [29]
    路鹏程, 陈栋, 王志平. 碳纤维/聚苯硫醚热塑性复合材料电阻焊接工艺[J]. 复合材料学报, 2020, 37(5):1041-1048. doi: 10.13801/j.cnki.fhclxb.20190807.002

    LU Pengcheng, CHEN Dong, WANG Zhiping. Resistance welding technology of carbon fiber/polyphenylene sulfide thermoplastic composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1041-1048(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190807.002
    [30]
    LI X K, SUN M C, SONG J P, et al. Enhanced adhesion between PEEK and stainless-steel mesh in resistance welding of CF/PEEK composites by various surface treatments[J]. High Performance Polymers,2021,33(8):892-904. doi: 10.1177/09540083211001115
    [31]
    LI X K, ZHANG T Y, LI S, et al. The effect of cooling rate on resistance-welded CF/PEEK joints[J]. Journal of Materials Research and Technology,2021,12:53-62. doi: 10.1016/j.jmrt.2021.02.071
    [32]
    BRASSARD D, DUBÉ M, TAVARES J R. Resistance welding of thermoplastic composites with a nanocomposite heating element[J]. Composites Part B: Engineering,2019,165:779-784. doi: 10.1016/j.compositesb.2019.02.038
    [33]
    王宏洋. CF/PPS复合材料的碳纤维电阻热连接技术研究[D]. 天津: 中国民航大学, 2018.

    WANG Hongyang. Research on carbon fiber electrical resistance thermal connection technology of CF/PPS composite[D]. Tianjin: Civil Aviation University of China, 2018(in Chinese).
    [34]
    麻志浩. 碳纤维增强热塑性复合材料自动铺放关键技术研究[D]. 镇江: 江苏科技大学, 2021.

    MA Zhihao. Research on the key technology of automatic placement of carbon fiber reinforced thermoplastic composites[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021(in Chinese).
    [35]
    宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1):83-91. doi: 10.11868/j.issn.1001-4381.2016.000147

    SONG Qinghua, XIAO Jun, WEN Liwei, et al. Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering,2018,46(1):83-91(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000147
    [36]
    马志涛, 李初晔, 冯长征, 等. 铺放压力和铺放压辊对丝束铺放质量影响的研究[J]. 航空制造技术, 2018, 61(20):88-91. doi: 10.16080/j.issn1671-833x.2018.20.088

    MA Zhitao, LI Chuye, FENG Changzheng, et al. Effect of placement pressure and placement roller on quality of tows placement[J]. Aeronautical Manufacturing Technology,2018,61(20):88-91(in Chinese). doi: 10.16080/j.issn1671-833x.2018.20.088
    [37]
    梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连: 大连理工大学, 2021.

    LIANG Yi'nan. Automated fiber placement and in-situ consolidation process of CF/PEEK lattice structure[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [38]
    宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4):120-126. doi: 10.11868/j.issn.1001-4381.2016.000411

    SONG Qinghua, XIAO Jun, WEN Liwei, et al. Non-isother-mal crystallization kinetics of thermoplastic composite for automated fiber placement[J]. Journal of Materials Engi-neering,2018,46(4):120-126(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000411
    [39]
    周冰洁, 张代军, 张英杰, 等. 高性能热塑性复合材料在航空发动机短舱上的应用[J]. 航空制造技术, 2020, 63(7):86-91. doi: 10.16080/j.issn1671-833x.2020.07.086

    ZHOU Bingjie, ZHANG Daijun, ZHANG Yingjie, et al. Applications of thermoplastic composites on aero-engine nacelles[J]. Aeronautical Manufacturing Technology,2020,63(7):86-91(in Chinese). doi: 10.16080/j.issn1671-833x.2020.07.086
    [40]
    张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. doi: 10.3969/j.issn.1671-833X.2013.15.003

    ZHANG Ting. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology,2013(15):32-35(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.15.003
    [41]
    MORGAN H. Electroimpact, toray, and janicki advance processing technologies for rapid manufacture of large thermoplastic composite parts[EB/OL]. (2021-09-07)[2022-06-06]. https://www.toraytac.com/media/news-item/2021/9/7/Electroimpact%2c-Toray%2c-and-Janicki-Advance-Processing-Technologies-for-Rapid-Manufacture-of-Large-Thermoplastic-Composite-Parts.
    [42]
    CHRIS R. Thermoplastics in aerospace composites outlook, 2014-2023[EB/OL]. (2014-09-01)[2022-06-06]. https://www.compositesworld.com/articles/the-outlook-for-thermoplastics-in-aerospace-composites-2014-2023.
    [43]
    GINGER G. Welding thermoplastic composites[EB/OL]. (2018-09-01)[2022-06-06]. https://www.compositesworld.com/articles/welding-thermoplastic-composites.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (2106) PDF downloads(402) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return