Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
RONG Liqing, YANG Juan, DAI Jun, et al. Preparation of WO3-x/CFs triphase catalyst and visible-light photocatalytic conversion of methane to methanol[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2709-2721. doi: 10.13801/j.cnki.fhclxb.20220627.001
Citation: RONG Liqing, YANG Juan, DAI Jun, et al. Preparation of WO3-x/CFs triphase catalyst and visible-light photocatalytic conversion of methane to methanol[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2709-2721. doi: 10.13801/j.cnki.fhclxb.20220627.001

Preparation of WO3-x/CFs triphase catalyst and visible-light photocatalytic conversion of methane to methanol

doi: 10.13801/j.cnki.fhclxb.20220627.001
Funds:  National Natural Science Foundation of China (52074103; U2004194); Natural Science Foundation of Henan Province (202300410181); Key Science and Technology Project of Henan Province (222102320095); Key Scientific Research Project of Henan Province Education Department (21 A440008)
  • Received Date: 2022-05-09
  • Accepted Date: 2022-06-18
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-06-27
  • Publish Date: 2023-05-15
  • Selective conversion of methane into platform molecule methanol is one of the ideal ways to effectively utilize natural gas resources. Photocatalytic technology with low carbon emission can activate and transform methane at room temperature and atmospheric pressure, whereas the methane conversion performance of aqueous photocatalytic system is still low. Oxygen defects-rich WO3-x was firstly synthesized through hydrothermal method and then triphase photocatalyst WO3-x/CFs was constructed by loading WO3-x on carbon fiber (CFs) with polytetrafluoroethylene concentrate (PTFE). Changing the addition amount of PTFE, the surface wettability of WO3-x/CFs can be regulated. The morphology, structure and surface properties of triphase catalysts were systematically characterized by XRD, SEM, water contact angle, electron paramagnetic resonance (EPR) and low temperature nitrogen adsorption-desorption. The results of visible-light photocatalytic experiments show that WO3-x/CFs triphase system can significantly improve the conversion performance of methane into methanol. Methane conversion amount of the optimal WO3-x/CFs-0.3 catalyst is 2522.20 μmol·g−1, which is 1.76 times and 2.48 times of WO3-x/Indium tin oxide conducting glass (Glas) and powder WO3-x diphase systems, respectively. Methanol yield of WO3-x/CFs-0.3 triphase system is 1918.83 μmol·g−1, which is 2.81 times and 4.69 times of WO3-x/Glas and powder WO3-x systems respectively, and meanwhile methanol selectivity of triphase WO3-x/CFs system is up to 76.76%. The enhanced photocatalytic performance of WO3-x/CFs is primarily due to the gas-liquid-solid triphase interface formed by the hydrophobic catalyst. The consumed methane can be directly transferred to the catalytic interface through gas transport channel in CFs, promoting the activation and conversion of methane molecules. Additionally, the triphase photocatalytic system shows excellent cyclic stability and the methanol yield of WO3-x/CFs-0.3 can still reach 1506.98 μmol·g−1 after 6 cycles.

     

  • loading
  • [1]
    SCHWACH P, PAN X, BAO X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chemical Reviews,2017,117(13):8497-8520. doi: 10.1021/acs.chemrev.6b00715
    [2]
    ZHAN C G, NICHOLS J A, DIXON D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy:   Molecular properties from density functional theory orbital energies[J]. Journal of Physical Che-mistry A,2003,107(20):4184-4195. doi: 10.1021/jp0225774
    [3]
    AASBERG-PETERSEN K, BAK HANSEN J H, CHRISTENSEN T S, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis A: General,2001,221(1):379-387.
    [4]
    RAVI M, RANOCCHIARI M, VAN BOKHOVEN J A. The direct catalytic oxidation of methane to methanol—A critical assessment[J]. Angewandte Chemie,2017,56(52):16464-16483. doi: 10.1002/anie.201702550
    [5]
    SONG H, MENG X G, WANG Z J, et al. Solar-energy-mediated methane conversion[J]. Joule,2019,3(7):1606-1636. doi: 10.1016/j.joule.2019.06.023
    [6]
    YULIATI L, YOSHIDA H. Photocatalytic conversion of methane[J]. Chemical Society Reviews,2008,37:1592-1602. doi: 10.1039/b710575b
    [7]
    XIE J J, JIN R X, LI A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nature Catalysis,2018,1(11):889-896. doi: 10.1038/s41929-018-0170-x
    [8]
    ZHOU Y Y, ZHANG L, WANG W Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis[J]. Nature Communications,2019,10(1):506-513. doi: 10.1038/s41467-019-08454-0
    [9]
    FAN Y Y, ZHOU W C, QIU X Y, et al. Photocatalytic selec-tive oxidation of methane by quantum sized bismuth vanadate[J]. Nature Sustainability,2021,4(6):509-515. doi: 10.1038/s41893-021-00682-x
    [10]
    SHENG X, LIU Z, ZENG R S, et al. Enhanced photocatalytic reaction at air-liquid-solid joint interfaces[J]. Journal of the American Chemical Society,2017,139(36):12402-12405. doi: 10.1021/jacs.7b07187
    [11]
    LIU J X, LI R, ZU X, et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8[J]. Chemi-cal Engineering Journal,2019,371:796-803. doi: 10.1016/j.cej.2019.03.283
    [12]
    XIA Y, XIAO K, CHENG B, et al. Improving artificial photosynthesis over carbon nitride by gas-liquid-solid interface management for full light-induced CO2 reduction to C1 and C2 fuels and O2[J]. ChemSusChem,2020,13(7):1730-1734. doi: 10.1002/cssc.201903515
    [13]
    VILLA K, MURCIA-LÓPEZ S, MORANTE J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Applied Catalysis B: Environmental,2016,187:30-36. doi: 10.1016/j.apcatb.2016.01.032
    [14]
    VILLA K, MURCIA-LÓPEZ S, ANDREU T, et al. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers[J]. Applied Catalysis B: Environmental,2015,163:150-155. doi: 10.1016/j.apcatb.2014.07.055
    [15]
    WEI S L, ZHU X L, ZHANG P Y, et al. Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis[J]. Applied Catalysis B: Environmental,2021,283:119661. doi: 10.1016/j.apcatb.2020.119661
    [16]
    ZHANG N, LI X Y, YE H C, et al. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of the American Chemical Society,2016,138(28):8928-8935. doi: 10.1021/jacs.6b04629
    [17]
    杨娟, 陈鹏宇, 戴俊, 等. Co3O4/WO3复合催化剂的合成及可见光催化转化甲烷制甲醇[J]. 燃料化学学报, 2022, 50(4):464-473.

    YANG Juan, CHEN Pengyu, DAI Jun, et al. Synthesis of Co3O4/WO3 composite catalysts for visible-light-driven conversion of methane to methanol[J]. Journal of Fuel Chemistry and Technology,2022,50(4):464-473(in Chinese).
    [18]
    SONG H, MENG X G, WANG S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society,2019,141(51):20507-20515. doi: 10.1021/jacs.9b11440
    [19]
    HE H H, JIANG B, YUAN J J, et al. Cost-effective electrogeneration of H2O2 utilizing HNO3 modified graphite/polytetrafluoroethylene cathode with exterior hydrophobic film[J]. Journal of Colloid and Interface Science,2019,533:471-480. doi: 10.1016/j.jcis.2018.08.092
    [20]
    XU A L, HE B, YU H X, et al. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: Water proof and enhanced oxygen transport[J]. Electrochimica Acta,2019,308:158-166. doi: 10.1016/j.electacta.2019.04.047
    [21]
    LIU X L, XU S, CHI H B, et al. Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation[J]. Chemical Engineering Journal,2019,359:1352-1359. doi: 10.1016/j.cej.2018.11.043
    [22]
    THOMMES M, KANEKO K, NEIMARK A, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10):1051-1069. doi: 10.1515/pac-2014-1117
    [23]
    薛超瑞, 李洋森, 黄蕊蕊, 等. BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能[J]. 复合材料学报, 2022, 39(7):3277-3286. doi: 10.13801/j.cnki.fhclxb.20210909.001

    XUE Chaorui, LI Yangsen, HUANG Ruirui, et al. Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3277-3286(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210909.001
    [24]
    DING P P, CUI L L, LI D, et al. Innovative dual-compartment flow reactor coupled with a gas diffusion electrode for in situ generation of H2O2[J]. Industrial & Engineering Chemistry Research,2019,58(16):6925-6932.
    [25]
    ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications,2020,11:1731. doi: 10.1038/s41467-020-15597-y
    [26]
    MONTEVERDE VIDELA A H A, ZHANG L, KIM J, et al. Mesoporous carbons supported non-noble metal Fe-NX electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Journal of Applied Electrochemistry,2013,43(2):159-169. doi: 10.1007/s10800-012-0497-y
    [27]
    YANG J, CHEN P Y, DAI J, et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3-x catalysts[J]. Energy Conversion and Management,2021,247:114767. doi: 10.1016/j.enconman.2021.114767
    [28]
    MURCIA-LÓPEZ S, VILLA K, ANDREU T, et al. Improved selectivity for partial oxidation of methane to methanol in presence of nitrite ions and BiVO4 photocatalyst[J]. Chemical Communications, 2015, 51: 7249-7252.
    [29]
    ZHU W L, SHEN M K, FAN G Z, et al. Facet-dependent enhancement in the activity of Bismuth Vanadate microcrystals for the photocatalytic conversion of methane to methanol[J]. ACS Applied Nano Materials,2018,1(12):6683-6691. doi: 10.1021/acsanm.8b01490
    [30]
    MURCIA-LÓPEZ S, VILLA K, ANDREU T, et al. Partial oxidation of methane to methanol using Bismuth-based photocatalysts[J]. ACS Catalysis,2014,4(9):3013-3019. doi: 10.1021/cs500821r
    [31]
    郑小强, 佟占鑫, 吴健博, 等. Bi2O3-TiO2复合氧化物光催化环己烷选择氧化[J]. 复合材料学报, 2022, 39(7):3268-3276.

    ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica,2022,39(7):3268-3276(in Chinese).
    [32]
    LIN R, WAN J W, XIONG Y, et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis[J]. Journal of the American Chemical Society,2018,140:9078-9082. doi: 10.1021/jacs.8b05293
    [33]
    SONG H, MENG X G, WANG S Y, et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS Catalysis,2020,10:14318-14326. doi: 10.1021/acscatal.0c04329
    [34]
    YANG B C, MA S X, CUI R J, et al. Novel low-cost simultaneous removal of NO and SO2 with •OH from decomposition of H2O2 catalyzed by alkali-magnetic modified fly ash[J]. Industrial & Engineering Chemistry Research,2019,58:5339-5347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (962) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return