Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
YAO Congcong, WEI Jianqiang, LIN Jinyu, et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001
Citation: YAO Congcong, WEI Jianqiang, LIN Jinyu, et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001

Application progress of nano-materials in detection of antibiotics by electrochemical sensors

doi: 10.13801/j.cnki.fhclxb.20220412.001
Funds:  Jiangsu Natural Science Foundation(BK20180103); Changshu Social Development Project(CS202008); Pre-research Project Funded by Jiangsu University Water Treatment Technology and Materials Collaborative Innovation Center
  • Received Date: 2022-02-14
  • Accepted Date: 2022-04-03
  • Rev Recd Date: 2022-03-24
  • Available Online: 2022-04-14
  • Publish Date: 2023-01-15
  • Since the discovery of antibiotics, they have been widely used in the prevention and treatment of bacterial infections because they can hinder the growth of bacteria. However, the abuse of antibiotics in animal husbandry and agriculture leads to antibiotic pollution, which greatly threatens the safety of water sources, increases bacterial drug resistance, and brings great harm to the environment and human health. For these reasons, the detection of antibiotics has attracted extensive attention in recent years. Based on the electrochemical activity of most antibiotics, nano-modified-electrode can improve the sensitivity of electrochemical sensor by enhancing the electrochemical oxidation or reduction reaction of antibiotics in electrolyte. Various electrochemical sensors for the detection of antibiotics are described in detail in this paper, as well as their properties. Finally, the challenges and development prospects of nanomaterial electrochemical sensors in antibiotic detection are discussed.

     

  • loading
  • [1]
    AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges[J]. Science of the Total Environment,2015,532:112-126. doi: 10.1016/j.scitotenv.2015.05.130
    [2]
    SEMAIL N F, ABDUL KEYON A S, SAAD B, et al. Simultaneous preconcentration and determination of sulfonamide antibiotics in milk and yoghurt by dynamic pH junction focusing coupled with capillary electrophoresis[J]. Talanta,2022,236:122833. doi: 10.1016/j.talanta.2021.122833
    [3]
    SONG X, XIE J, ZHANG M, et al. Simultane ous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection[J]. Journal of Chromatography B,2018,1076:103-109. doi: 10.1016/j.jchromb.2018.01.020
    [4]
    HUANG Y, YE D, YANG J, et al. A novel dual-signal molecularly imprinted electrochemical sensor based on NiFe prussian blue analogue and SnS2 for detection of p-hydroxyacetophenone[J]. Chemical Engineering Journal,2022,435:134981. doi: 10.1016/j.cej.2022.134981
    [5]
    王黎明. 四氧化三钴纳米材料的制备及其电化学性能研究[D]. 武汉: 华中科技大学, 2013.

    WANG Liming. Preparation and electrochemical properties of Co3O4 nanomaterials[D]. Wuhan: Huazhong University of Science and Technology, 2013(in Chinese).
    [6]
    QIU D, WANG X, WEN Y, et al. A low-cost wireless intelligent portable sensor based on disposable laser-induced porous graphene flexible electrode decorated by gold nanoshells for rapid detection of sulfonamides in aquatic products[J]. Food Analytical Methods, 2022, 15: 1471-1481.
    [7]
    RAYKOVA M R, CORRIGAN D K, HOLDSWORTH M, et al. Emerging electrochemical sensors for real-time detection of tetracyclines in milk[J]. Biosensors (Basel),2021,11(7):232. doi: 10.3390/bios11070232
    [8]
    PAN Y, SHAN D, DING L L, et al. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers[J]. Water Research,2021,205:117670. doi: 10.1016/j.watres.2021.117670
    [9]
    MORO G, BOTTARI F, SLEEGERS N, et al. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome[J]. Sensors and Actuators B: Chemical,2019,297:126786. doi: 10.1016/j.snb.2019.126786
    [10]
    ZAREI K, GHORBANI M. Fabrication of a new ultrasensitive AuNPs-MIC-based sensor for electrochemical determination of streptomycin[J]. Electrochimica Acta,2019,299:330-338. doi: 10.1016/j.electacta.2019.01.016
    [11]
    PHAM T D M, ZIORA Z M, BLASKOVICH M A T. Quinolone antibiotics[J]. Medchemcomm,2019,10(10):1719-1739. doi: 10.1039/C9MD00120D
    [12]
    JOHN A, BENNY L, CHERIAN A R, et al. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review[J]. Journal of Nanostructure in Chemistry,2021,11(1):1-31. doi: 10.1007/s40097-020-00372-8
    [13]
    GONZÁLEZ FÁ A, PIGNANELLI F, LÓPEZ-CORRAL I, et al. Detection of oxytetracycline in honey using SERS on silver nanoparticles[J]. TrAC Trends in Analytical Chemistry,2019,121:115673. doi: 10.1016/j.trac.2019.115673
    [14]
    LI L, LIU X, YANG L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosensors and Bioelectronics,2019,142:111525. doi: 10.1016/j.bios.2019.111525
    [15]
    KUMAR N, ROSY, GOYAL R N. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin[J]. Sensors and Actuators B: Chemical,2017,243:658-668. doi: 10.1016/j.snb.2016.12.025
    [16]
    HUANG J, SHEN X, WANG R, et al. A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode[J]. RSC Advances,2017,7(1):535-542. doi: 10.1039/C6RA25106D
    [17]
    GAN T, SHI Z, SUN J, et al. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst[J]. Talanta,2014,121:187-193. doi: 10.1016/j.talanta.2014.01.002
    [18]
    POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499. doi: 10.1038/35035045
    [19]
    MANJULA N, PULIKKUTTY S, CHEN T W, et al. Electrochemical sensor based on cerium niobium oxide nanoparticles modified electrode for sensing of environmental toxicity in water samples[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,637:128277. doi: 10.1016/j.colsurfa.2022.128277
    [20]
    GUO S, LI Y, LI B, et al. Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries[J]. Journal of the American Chemical Society,2022,144(5):2179-2188. doi: 10.1021/jacs.1c10872
    [21]
    SHEN X, WANG T, WEI X, et al. Facile synthesis of metal oxide and conductive polymers around silicon nanowire arrays for a high-performance aqueous supercapacitor[J]. ACS Applied Energy Materials,2022,5(2):2596-2605. doi: 10.1021/acsaem.2c00066
    [22]
    GUAN H, CAI P, ZHANG X, et al. Cu2O templating strategy for the synthesis of octahedral Cu2O@Mn(OH)2 core-shell hierarchical structures with a superior performance supercapacitor[J]. Journal of Materials Chemistry A,2018,6(28):13668-13675. doi: 10.1039/C8TA01828F
    [23]
    ZHENG Y, ZHANG L, GUAN J, et al. Controlled synthesis of CuO/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O[J]. ACS Sustainable Chemistry & Engineering,2021,9(4):1754-1761.
    [24]
    GU W, ZHENG W, LIU H, et al. Electroactive Cu2O nanocubes engineered electrochemical sensor for H2S detection[J]. Analytica Chimica Acta,2021,1150:338216. doi: 10.1016/j.aca.2021.338216
    [25]
    WU F, XU F, CHEN L, et al. Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination[J]. Chemical Research in Chinese Universities,2016,32(3):468-473. doi: 10.1007/s40242-016-5367-4
    [26]
    SHABANI-NOOSHABADI M, ROOSTAEE M. Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis[J]. Journal of Molecular Liquids,2016,220:329-333. doi: 10.1016/j.molliq.2016.05.001
    [27]
    SALMANPOUR S. An electrochemical sensitive sensor for determining sulfamethoxazole using a modified electrode based on biosynthesized NiO nanoparticles paste electrode[J]. International Journal of Electrochemical Science,2019,14:9552-9561.
    [28]
    LU Y, SU L, QI J, et al. A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene[J]. Journal of Materials Chemistry A,2018,6(28):13717-13724. doi: 10.1039/C8TA03451F
    [29]
    ARFIN T, RANGARI S N. Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods,2018,10(3):347-358. doi: 10.1039/C7AY02650A
    [30]
    SEBASTIAN N, YU W C, BALRAM D. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite[J]. Inorganic Chemistry Frontiers,2019,6(1):82-93. doi: 10.1039/C8QI01000E
    [31]
    HUANG Q, LIN X, TONG L, et al. Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells[J]. ACS Sustainable Chemistry & Engineering,2020,8(3):1644-1650.
    [32]
    ARUMUGASAMY S K, GOVINDARAJU S, YUN K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes[J]. Applied Surface Science,2020,508:145294. doi: 10.1016/j.apsusc.2020.145294
    [33]
    LIN J, QIAN J, WANG Y, et al. Quantum dots@porous carbon platform for the electrochemical sensing of oxytetracycline[J]. Microchemical Journal,2021,167:106341. doi: 10.1016/j.microc.2021.106341
    [34]
    WU H, LI X, CHEN M, et al. A nanohybrid based on porphyrin dye functionalized graphene oxide for the application in non-enzymatic electrochemical sensor[J]. Electrochimica Acta,2018,259:355-364. doi: 10.1016/j.electacta.2017.10.122
    [35]
    DEVI N R, SASIDHARAN M, SUNDRAMOORTHY A K. Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion[J]. Journal of the Electrochemical Society,2018,165(8):B3046-B3053. doi: 10.1149/2.0081808jes
    [36]
    ZHANG X, ZHANG Y C, ZHANG J W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures[J]. Talanta,2016,161:567-573. doi: 10.1016/j.talanta.2016.09.013
    [37]
    MARTINS T S, BOTT-NETO J L, OLIVEIRA JR O N, et al. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples[J]. Journal of Electroanalytical Chemistry,2021,882:114985. doi: 10.1016/j.jelechem.2021.114985
    [38]
    TURSYNBOLAT S, BAKYTKARIM Y, HUANG J, et al. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE[J]. Journal of Pharmaceutical Analysis,2018,8(2):124-130. doi: 10.1016/j.jpha.2017.11.001
    [39]
    CHEN Q, CHEN L, QI J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength[J]. Chinese Chemical Letters,2019,30(6):1214-1218. doi: 10.1016/j.cclet.2019.03.002
    [40]
    SANTOS A M, WONG A, CINCOTTO F H, et al. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film[J]. Mikrochim Acta,2019,186(3):148. doi: 10.1007/s00604-019-3268-1
    [41]
    WONG A, SANTOS A M, CINCOTTO F H, et al. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices[J]. Talanta,2020,206:120252. doi: 10.1016/j.talanta.2019.120252
    [42]
    LIU D, LI H J, LYU B, et al. Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots[J]. Optical Materials,2019,89:468-472. doi: 10.1016/j.optmat.2019.01.026
    [43]
    LU L, ZHOU L, CHEN J, et al. Nanochannel-confined graphene quantum dots for ultrasensitive electrochemical analysis of complex samples[J]. ACS Nano,2018,12(12):12673-12681. doi: 10.1021/acsnano.8b07564
    [44]
    QIN L, ZENG G, LAI C, et al. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing[J]. Coordination Chemistry Reviews,2018,359:1-31. doi: 10.1016/j.ccr.2018.01.006
    [45]
    SINGH E, MEYYAPPAN M, NALWA H S. Flexible graphene-based wearable gas and chemical sensors[J]. ACS Applied Materials & Interfaces,2017,9(40):34544-34586. doi: 10.1021/acsami.7b07063
    [46]
    SU X, CHAN C, SHI J, et al. A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells[J]. Biosensors and Bioelectronics,2017,92:489-495. doi: 10.1016/j.bios.2016.10.076
    [47]
    DUN M, TAN J, TAN W, et al. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: A room-temperature H2S gas sensor with ultra-fast response and recovery[J]. Sensors and Actuators B: Chemical,2019,298:126839. doi: 10.1016/j.snb.2019.126839
    [48]
    AHMED S R, CIRONE J, CHEN A. Fluorescent Fe3O4 quantum dots for H2O2 detection[J]. ACS Applied Nano Materials,2019,2(4):2076-2085. doi: 10.1021/acsanm.9b00071
    [49]
    HUANG Q, ZHAO Z, NIE D, et al. Molecularly imprinted poly(thionine)-based electrochemical sensing platform for fast and selective ultratrace determination of patulin[J]. Analytical Chemistry,2019,91(6):4116-4123. doi: 10.1021/acs.analchem.8b05791
    [50]
    GUI R, JIN H, GUO H, et al. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors[J]. Biosensors and Bioelectronics,2018,100:56-70. doi: 10.1016/j.bios.2017.08.058
    [51]
    BELBRUNO J J. Molecularly imprinted polymers[J]. Chemical Reviews,2019,119(1):94-119. doi: 10.1021/acs.chemrev.8b00171
    [52]
    LIU Z, FAN T, ZHANG Y, et al. Electrochemi cal assay of ampicillin using Fe3N-Co2N nanoarray coated with molecularly imprinted polymer[J]. Mikrochim Acta,2020,187(8):442. doi: 10.1007/s00604-020-04432-2
    [53]
    SUN Y, GAO H, XU L, et al. Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification[J]. Food Chemistry,2020,332:127376. doi: 10.1016/j.foodchem.2020.127376
    [54]
    RAO H, ZHAO X, LIU X, et al. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S[J]. Biosensors and Bioelectronics,2018,100:341-347. doi: 10.1016/j.bios.2017.09.016
    [55]
    ENSAFI A A, NASR-ESFAHANI P, REZAEI B. Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots[J]. Sensors and Actuators B: Chemical,2018,270:192-199. doi: 10.1016/j.snb.2018.05.024
    [56]
    WANG Y, YAO L, LIU X, et al. CuCo2O4/N-doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole[J]. Biosensors and Bioelectronics,2019,142:111483. doi: 10.1016/j.bios.2019.111483
    [57]
    LIU Y, YANG G, LI T, et al. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection[J]. Chinese Chemical Letters,2021,32(6):1957-1962. doi: 10.1016/j.cclet.2021.01.016
    [58]
    TANG Y, LIU P, XU J, et al. Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline[J]. Sensors and Actuators B: Chemical,2018,258:906-912. doi: 10.1016/j.snb.2017.11.071
    [59]
    LV L, ZHANG B, TIAN P, et al. A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection enrofloxacin[J]. Journal of Electroanalytical Chemistry,2022,911:116251. doi: 10.1016/j.jelechem.2022.116251
    [60]
    SONG J, HUANG M, LIN X, et al. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection[J]. Chemical Engineering Journal,2022,427:130913. doi: 10.1016/j.cej.2021.130913
    [61]
    MAKSIMCHUK N V, ZALOMAEVA O V, SKOBELEV I Y, et al. Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,468(2143):2017-2034. doi: 10.1098/rspa.2012.0072
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (903) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return