Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001
Citation: ZHANG Liqing, ZHAN Xiaojing, HAN Baoguo, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5225-5240. doi: 10.13801/j.cnki.fhclxb.20221223.001

Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide

doi: 10.13801/j.cnki.fhclxb.20221223.001
Funds:  National Natural Science Foundation Area Project (51968021); China Postdoctoral Science Foundation (2022M713497); Natural Science Foundation of Jiangxi Province (20202BAB204031; 20202BABL214042); General Project of Education Department of Jiangxi Province (GJJ210656)
  • Received Date: 2022-10-17
  • Accepted Date: 2022-12-04
  • Rev Recd Date: 2022-11-23
  • Available Online: 2022-12-26
  • Publish Date: 2023-09-15
  • Carbon nanotube/titanium dioxide (CNT/TiO2) composite fillers were obtained using electrostatic self-assembly technology with combining conductive CNT and microscale TiO2 based on excluded volume effect. And then, cementitious composites with electrostatic self-assembly CNT/TiO2 was used to develop cementitious composites with excellent self-sensing performance. The electrical properties of cementitious composites with electrostatic self-assembly CNT/TiO2 were investigated. At the same time, the effects of different environmental conditions on self-sensing performance also were studied including loading amplitudes, loading rates and water content. Additionally, modification mechanisms of electrostatic self-assembly CNT/TiO2 composite fillers on electrical and self-sensing performance of cementitious composites were also analyzed. Finally, the effect of different environmental factors on self-sensing performance were compared by radar chart. The results show that electrical resistivity of cementitious composites with electrostatic self-assembly CNT/TiO2 is decreased by 99.8% when the volume content of CNT is 2.40vol%. Its maximum fractional change in resistivity is up to 49.23% under cyclic compression. Meanwhile, its stress sensitivity and strain sensitivity can reach 8.21%/MPa and 812, respectively. The cementitious composites with electrostatic self-assembly CNT/TiO2 present excellent self-sensing performance under different loading amplitudes, loading rates and water content. The sensitivities decrease with increasing of the loading amplitudes but increase with increasing of loading rates. In addition, the maximum fractional change in resistivity, stress and strain sensitivities increase with the decreasing of the water content. The maximum fractional change in resistivity, stress sensitivity and strain sensitivity of cementitious composites with electrostatic self-assembly CNT/TiO2 can reach 74.36%, 12.39%/MPa and 1350 under full drying at 50℃, respectively. The radar chart demonstrates that the important orders of the different environmental factors effect on self-sensing performance is water content, loading amplitudes and loading rates.


  • loading
  • [1]
    SIAHKOUHI M, RAZAQPUR G, HOULT N A, et al. Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review[J]. Construction and Building Materials,2021,309:125137. doi: 10.1016/j.conbuildmat.2021.125137
    HAN B G, DING S Q, YU X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    CHUNG D D L. Self-sensing concrete: From resistance-based sensing to capacitance-based sensing[J]. International Journal of Smart and Nano Materials,2021,12(1):1-19. doi: 10.1080/19475411.2020.1843560
    WANG Y Y, ZHANG L Q. Development of self-sensing cementitious composite incorporating hybrid graphene nanoplates and carbon nanotubes for structural health monitoring[J]. Sensors and Actuators A: Physical,2022,336:113367. doi: 10.1016/j.sna.2022.113367
    欧进萍, 关新春, 李惠. 应力自感知水泥基复合材料 及其传感器的研究进展[J]. 复合材料学报, 2006(4):1-8. doi: 10.3321/j.issn:1000-3851.2006.04.001

    OU Jinping, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica,2006(4):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.001
    TENG F, LUO J L, GAO Y B, et al. Piezoresistive/ piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review[J]. Nanotechnology Reviews,2021,10(1):1873-1894. doi: 10.1515/ntrev-2021-0112
    CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures,1993,2(1):22-30. doi: 10.1088/0964-1726/2/1/004
    TEOMETE E. Transverse strain sensitivity of steel fiber reinforced cement composites tested by compression and split tensile tests[J]. Construction and Building Materials,2014,55:136-145. doi: 10.1016/j.conbuildmat.2014.01.016
    LE H V, LEE D H, KIM D J. Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes[J]. Sensors and Actuators A: Physical,2020,305:111925. doi: 10.1016/j.sna.2020.111925
    黄世峰, 徐东宇, 徐荣华, 等. 碳纤维/水泥基复合材料微观结构及机敏特性[J]. 复合材料学报, 2006, 23(4):95-99. doi: 10.3321/j.issn:1000-3851.2006.04.017

    HUANG Shifeng, XU Dongyu, XU Ronghua, et al. Microcosmic and smart properties of carbon fiber cement-based composites[J]. Acta Materiae Compositae Sinica,2006,23(4):95-99(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.017
    HAN B G, ZHANG L Q, ZENG S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2017,95:100-109. doi: 10.1016/j.compositesa.2017.01.008
    DANOGLIDIS P A, KONSTA-GDOUTOS M S, GDOUTOS E E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Construction and Building Materials,2016,120:265-274. doi: 10.1016/j.conbuildmat.2016.05.049
    ÇELIK D N, YıLDıRıM G, AL-DAHAWI A, et al. Self-monitoring of flexural fatigue damage in large-scale steel-reinforced cementitious composite beams[J]. Cement and Concrete Composites,2021,123:104183. doi: 10.1016/j.cemconcomp.2021.104183
    CASTAÑEDA-SALDARRIAGA D L, ALVAREZ-MONTOYA J, MARTÍNEZ-TEJADA V, et al. Toward structural health monitoring of civil structures based on self-sensing concrete nanocomposites: A validation in a reinforced-concrete beam[J]. International Journal of Concrete Structures and Materials,2021,15(1):99-116.
    施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5):1033-1049. doi: 10.13801/j.cnki.fhclxb.20180328.003

    SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1033-1049(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180328.003
    SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants[J]. Construction and Building Materials,2017,155:389-399. doi: 10.1016/j.conbuildmat.2017.08.059
    GUAN X C, BAI S, LI H, et al. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cementitious composites under the early-age freezing conditions[J]. Construction and Building Materials,2020,233:117317. doi: 10.1016/j.conbuildmat.2019.117317
    SIKORA P, ABD ELRAHMAN M, CHUNG S Y, et al. Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature[J]. Cement and Concrete Composites,2019,95:193-204. doi: 10.1016/j.cemconcomp.2018.11.006
    ZHANG L Q, ZHENG Q F, DONG X F, et al. Tailoring sensing properties of smart cementitious composites based on excluded volume theory and electrostatic self-assembly[J]. Construction and Building Materials,2020,256:119452. doi: 10.1016/j.conbuildmat.2020.119452
    张立卿. 水泥基材料纳米改性机制与复合静电自组装纳米填料改性[D]. 大连: 大连理工大学, 2018.

    ZHANG Liqing. Nano-modification mechanisms and electrostatic self-assembly nano filler modification of cement based materials[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    ZHANG L Q, DING S Q, LI L W, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials[J]. Composites Part A: Applied Science and Manufacturing,2018,109:303-320. doi: 10.1016/j.compositesa.2018.03.020
    ZHANG L Q, HAN B G, OUYANG J, et al. Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler[J]. Archives of Civil and Mechanical Engineering,2017,17(2):354-364. doi: 10.1016/j.acme.2016.11.001
    ZHANG L Q, LI L W, WANG Y L, et al. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler[J]. Construction and Building Materials,2020,238:117787. doi: 10.1016/j.conbuildmat.2019.117787
    HAN B G, ZHANG L Q, SUN S W, et al. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality[J]. Composites Part A: Applied Science and Manufacturing,2015,79:103-115. doi: 10.1016/j.compositesa.2015.09.016
    HAN B G, SUN S W, DING S Q, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2015,70:69-81. doi: 10.1016/j.compositesa.2014.12.002
    HAN B G, WANG Y Y, DING S Q, et al. Self-sensing cementitious composites incorporated with botryoid hybrid nano-carbon materials for smart infrastructures[J]. Journal of Intelligent Material Systems and Structures,2017,28(6):699-727. doi: 10.1177/1045389X16657416
    罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LUO Jianlin. Fabrication and functional properties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
    LIU L Y, XU J X, YIN T J, et al. Improved conductivity and piezoresistive properties of Ni-CNTs cement-based composites under magnetic field[J]. Cement and Concrete Composites,2021,121:104089. doi: 10.1016/j.cemconcomp.2021.104089
    YIN T J, XU J X, WANG Y, et al. Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content[J]. Construction and Building Materials,2020,254:119306. doi: 10.1016/j.conbuildmat.2020.119306
    WANG L N, ASLANI F. Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales[J]. Construction and Building Materials,2022,314:125679. doi: 10.1016/j.conbuildmat.2021.125679
    DONG S F, ZHANG W, WANG D N, et al. Modifying self-sensing cement-based composites through multiscale composition[J]. Measurement Science and Technology,2021,32(7):74002. doi: 10.1088/1361-6501/abdfed
    左俊卿, 周虹, 姚武, 等. CNT-CF水泥基材料传感特性研究[J]. 材料导报, 2017, 31(22):125-129. doi: 10.11896/j.issn.1005-023X.2017.022.025

    ZUO Junqing, ZHOU Hong, YAO Wu, et al. Research on the sensing properties of CNT-CF/cement-based materials[J]. Materials Reports,2017,31(22):125-129(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.022.025
    ZHANG L Q, DING S Q, DONG S F, et al. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express,2017,4(12):125704. doi: 10.1088/2053-1591/aa9d1d
    LUO J L, ZHANG C W, DUAN Z D, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuators A: Physical,2018,280:413-421. doi: 10.1016/j.sna.2018.08.010
    DING S Q, XIANG Y, NI Y Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[J]. Nano Today,2022,43:101438. doi: 10.1016/j.nantod.2022.101438
    JANG D, YOON H N, SEO J, et al. Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor[J]. Journal of Building Engineering,2022,47:103816. doi: 10.1016/j.jobe.2021.103816
    LOUKILI A, KHELIDJ A, RICHARD P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete[J]. Cement and Concrete Research,1999,29(4):577-584. doi: 10.1016/S0008-8846(99)00022-8
    ZHANG L Q, DING S Q, HAN B G, et al. Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/ nanocarbon black composite filler[J]. Composites Part A: Applied Science and Manufacturing,2019,119:8-20. doi: 10.1016/j.compositesa.2019.01.010
    UBERTINI F, LAFLAMME S, CEYLAN H, et al. Novel nanocomposite technologies for dynamic monitoring of structures: A comparison between cement-based embeddable and soft elastomeric surface sensors[J]. Smart Materials and Structures,2014,23(4):045023. doi: 10.1088/0964-1726/23/4/045023
    MENG W N, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research,2017,101:46-54. doi: 10.1016/j.cemconres.2017.08.018
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(10)

    Article Metrics

    Article views (676) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint