Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002
Citation: ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002

Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen

doi: 10.13801/j.cnki.fhclxb.20210923.002
  • Received Date: 2021-07-19
  • Accepted Date: 2021-08-27
  • Rev Recd Date: 2021-08-18
  • Available Online: 2021-09-24
  • Publish Date: 2022-08-31
  • The hydrogen evolution reaction (HER) has broader research prospects than traditional hydrogen production methods, but because of its slow kinetics, low-cost and high-efficiency electrocatalysts have become parti-cularly important in HER. NbS2@MoS2 with the morphology of nanoflowers and nanosheets was prepared by one-step molten salt electrolysis. Using XRD, SEM, TEM, XPS, SAED and other methods to characterize the physical and chemical properties of the electrocatalysts. The results show that the NbS2@MoS2 nanoflower catalyst exhibits a polycrystalline state with a thin and film flower-like structure, and the Nb elements are uniformly distributed on the surface of MoS2. The HER performance is verified by electrochemical tests. The test results show that the nanoflower structure shows excellent electrocatalytic performance in HER. In a 1 mol/L KOH solution, the overpotential is 292.9 mV at a current density of 10.0 mA·cm−2, and the Tafel slope is 107.0 mV·dec−1, the charge transfer impe-dance is 31.0 Ω, and the electrochemically active surface area is 13.7 mF·cm−2. And after 20 h of catalysis, it can still maintain good electrocatalytic activity. Nb deposition forms defects on the surface of MoS2, and at the same time forms NbS2 on the surface, which provides more active sites and improves water splitting performance. High-temperature molten salt electrocrystallization provides a new method for the synthesis of catalytic materials.

     

  • loading
  • [1]
    DU H L, HODGETTS R Y, CHATTI M, et al. Is molybdenum disulfide modified with molybdenum metal catalytically active for the nitrogen reduction reaction?[J]. Journal of the Electrochemical Society,2020,167(14):146507. doi: 10.1149/1945-7111/abc1a8
    [2]
    ZHANG G H, CHANG H Q, WANG L, et al. Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions[J]. International Journal of Minerals, Metallurgy and Materials,2018,25(4):405-412. doi: 10.1007/s12613-018-1585-8
    [3]
    RHEEM Y, PARK S H, YU S, et al. Electrospun hybrid MoS2 nanofibers for high-efficiency electrocatalytic hydrogen evolution reaction[J]. Journal of the Electrochemical Society,2020,167(6):066522.
    [4]
    YU S H, CHEN W Z, WANG H Y, et al. Engineering sulfide-phosphide based double catalysts on 3D nickel phosphides framework for electrolytic hydrogen evolution: Activating short-range crystalline MoS2 with Ni5P4-Ni2P template[J]. Journal of the Electrochemical Society,2020,167(2):26511. doi: 10.1149/1945-7111/ab6a85
    [5]
    JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identifi-cation of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100. doi: 10.1126/science.1141483
    [6]
    LAURSEN A B, KEGNAES S, DAHL S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Envi-ronmental Science,2012,5(2):5577-5591.
    [7]
    LIU N, YANG L C, WANG S N, et al. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution[J]. Jour-nal of Power Sources,2015,275:588-594. doi: 10.1016/j.jpowsour.2014.11.039
    [8]
    SUN Y G, ALIMOHAMMADI F, ZHANG D T, et al. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis[J]. Nano Letters,2017,17(3):1963-1969. doi: 10.1021/acs.nanolett.6b05346
    [9]
    HUANG H L, CHEN L Q, LIU C H, et al. Hierarchically nanostructured MoS2 with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2016,4(38):14577-14585. doi: 10.1039/C6TA06174E
    [10]
    LUKOWSKI M A, DANIEL A S, MENG F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society,2013,135(28):10274-10277. doi: 10.1021/ja404523s
    [11]
    VOIRY D, YAMAGUCHI H, LI J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials,2013,12(9):850-855. doi: 10.1038/nmat3700
    [12]
    LUKOWSKI M A, DANIEL A S, ENGLISH C R, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science,2014,7(8):2608-2613.
    [13]
    EFTEKHARI A. Correction: Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications[J]. Journal of Materials Chemistry A,2020,8(3):1480. doi: 10.1039/C9TA90302J
    [14]
    ZHOU X F, LIN S H, YANG X L, et al. MoSx-coated NbS2 nanoflakes grown on glass carbon: An advanced electrocatalyst for the hydrogen evolution reaction[J]. Nanoscale,2018,10(7):3444-3450. doi: 10.1039/C7NR09172A
    [15]
    PAN H. Metal dichalcogenides monolayers: Novel catalysts for electrochemical hydrogen production[J]. Scienti-fic Reports,2014,4(1):5348.
    [16]
    LIU Y Y, WU J J, HACKENBERG K P, et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution[J]. Nature Energy,2017,2(9):17127. doi: 10.1038/nenergy.2017.127
    [17]
    GUO X X, DU H T, QU F L, et al. Recent progress in electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A,2019,7(8):3531-3543. doi: 10.1039/C8TA11201K
    [18]
    ZHAO S H, HOTTA T, KORETSUNE T, et al. Two-dimensional metallic NbS2: Growth, optical identification and transport properties[J]. 2D Materials,2016,3:25027. doi: 10.1088/2053-1583/3/2/025027
    [19]
    FU Q D, WANG X W, ZHOU J D, et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2[J]. Chemistry of Materials,2018,30(12):4001-4007. doi: 10.1021/acs.chemmater.7b05117
    [20]
    ZHAO X J, LI Y B, ZHAO C, et al. Hierarchical ultrathin Mo/MoS2(1−xy)Px nanosheets assembled on P, N Co-doped carbon nanotubes for hydrogen evolution in both acidic and alkaline electrolytes[J]. Small,2020,16(51):2004973. doi: 10.1002/smll.202004973
    [21]
    QIU H, ZHENG H Y, JIN Y H, et al. Dopamine-derived N-doped carbon-encapsulated MoS2 microspheres as a high-performance anode for sodium-ion batteries[J]. Ionics,2020,26(11):5543-5551. doi: 10.1007/s11581-020-03734-y
    [22]
    VANDALON V, VERHEIJEN M A, KESSELS W M M, et al. Atomic layer deposition of Al-doped MoS2: Synthesizing a p-type 2D semiconductor with tunable carrier density[J]. ACS Applied Nano Materials,2020,3(10):10200-10208. doi: 10.1021/acsanm.0c02167
    [23]
    ZHOU G Y, WU X M, ZHAO M M, et al. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting[J]. ChemSusChem,2021,14(2):699-708. doi: 10.1002/cssc.202002338
    [24]
    FAN C, YUE X Y, SHEN X P, et al. One-pot hydrothermal synthesis of Ni3S2/MoS2/FeOOH hierarchical microspheres on Ni foam as a high-efficiency and durable dual-function electrocatalyst for overall water splitting[J]. ChemElectroChem,2021,8(4):665-674. doi: 10.1002/celc.202001430
    [25]
    JIANG R D, DENG B, PI L, et al. Molten electrolyte-modulated electrosynthesis of multi-anion Mo-based lamellar nanohybrids derived from natural minerals for boosting hydrogen evolution[J]. ACS Applied Materials & Interfaces,2020,12(52):57870-57880.
    [26]
    YANG H, CHEN Y X, WANG C B, et al. Confined growth of ultrafine Mo2C nanoparticles embedded in N-doped carbon nanosheet for water splitting[J]. Journal of Alloys and Compounds,2020,842:155939. doi: 10.1016/j.jallcom.2020.155939
    [27]
    ZHOU J, XIAO H S, WENG W, et al. Interfacial confinement of Ni-V2O3 in molten salts for enhanced electrocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2020,50:280-285. doi: 10.1016/j.jechem.2020.03.048
    [28]
    MOHAMEDI M, SATO Y, YAMAMURA T. Examination of niobium electrochemistry from the reduction of Nb3Cl8 in molten LiCl-KCl eutectic[J]. Electrochimica Acta,1999,44(10):1559-1565. doi: 10.1016/S0013-4686(98)00288-6
    [29]
    YIN T Q, CHEN L, XUE Y, et al. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt[J]. International Journal of Minerals, Metallurgy and Materials,2020,27(12):1657-1665. doi: 10.1007/s12613-020-2112-2
    [30]
    MAKHATOVA A, ULYKBANOVA G, SADYK S, et al. Degra-dation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO2 catalysts[J]. Scientific Reports,2019,9(1):19284. doi: 10.1038/s41598-019-55775-7
    [31]
    SUN L F, ZHANG X M, LIU F C, et al. Vacuum level depen-dent photoluminescence in chemical vapor deposition-grown monolayer MoS2[J]. Scientific Reports,2017,7(1):16714. doi: 10.1038/s41598-017-15577-1
    [32]
    GU H F, LI G P, LIU C Z, et al. Considerable knock-on displacement of metal atoms under a low energy electron beam[J]. Scientific Reports,2017,7(1):184. doi: 10.1038/s41598-017-00251-3
    [33]
    GNANASEKAR P, PERIYANAGOUNDER D, KULANDAIVEL J. Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions[J]. Nanoscale,2019,11(5):2439-2446. doi: 10.1039/C8NR10092F
    [34]
    GNANASEKAR P, RANJITH K S, MANIVEL P, et al. Hierarchical NbS2/MoS2-carbon nanofiber electrode for highly efficient and stable hydrogen evolution reaction at all ranges of pH[J]. ACS Applied Energy Materials,2020,3(7):6717-6725. doi: 10.1021/acsaem.0c00856
    [35]
    CHEN B B, LI X F, LI X, et al. Facile fabrication of hierarchical carbon fiber-MoS2 ultrathin nanosheets and its tribological properties[J]. RSC Advances,2016,6(65):60446-60453. doi: 10.1039/C6RA11419A
    [36]
    PAULRAJ G, VENKATESH P S, DHARMARAJ P, et al. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(3):1793-1801. doi: 10.1016/j.ijhydene.2019.11.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1617) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return