Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005
Citation: ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005

Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide

doi: 10.13801/j.cnki.fhclxb.20210906.005
  • Received Date: 2021-06-07
  • Accepted Date: 2021-08-14
  • Rev Recd Date: 2021-07-26
  • Available Online: 2021-09-06
  • Publish Date: 2022-07-30
  • The selective oxidation of cyclohexane to cyclohexanol and cyclohexanone is an important process to synthesis of caprolactam, which is an important raw material in the production of nylon. However, the industrial route suffered from the disadvantages such as harsh reaction conditions and low reactivity, therefore, selective oxidation of cyclohexane under mild conditions attracted great attention. Since photocatalysis has unique advantages in saturated C—H activation and oxidation, in this paper, a series of Bi2O3-TiO2 composite photocatalysts were prepared by hydrothermal method. Their structure, morphology, optical and photoelectrochemical properties were characterized in detail by various techniques such as SEM, XRD, N2 physical absorption and desorption, UV-Vis, photoluminescence spectroscopy, and transient photocurrent response. The photocatalytic performance of pure TiO2, Bi2O3 and Bi2O3-TiO2 composites toward selective oxidation of cyclohexane was compared under the reaction conditions of ambient temperature, 0.1 MPa of oxygen, and 500 W xenon lamp simulating solar light source. The results show that the catalytic activities of hybrid Bi2O3-TiO2 composites are higher than that of pure TiO2. Among them, 9%Bi2O3-TiO2 exhibits the highest activity, the conversion is 13.32%, and the total selectivity (cyclohexanone and cyclohexanol) is 95.5%. The selectivity of cyclohexanone and cyclohexanol is 57.3% and 38.2%, respectively, and the ketone to alcohol ratio is 1.5. The characterization results confirm that the composite catalyst has a wider light absorption frequency range and can effectively promote the separation of photogenerated electrons and holes. In addition, the Bi2O3-TiO2 composites possess higher specific surface area than pure TiO2, which is conducive to increasing the concentration of surface active centers.

     

  • loading
  • [1]
    刘懿, 朱明乔, 王磊, 等. 微管内环己烷无催化氧化工艺条件对产物分布影响研究[J]. 高校化学工程学报, 2016, 30(2):378-383. doi: 10.3969/j.issn.1003-9015.2016.02.018

    LIU Yi, ZHU Mingqiao, WANG Lei, et al. Effects of process conditions on products distribution of cyclohexane non-catalytic oxidation in micro-capillary[J]. Journal of Che-mical Engineering of Chinese Universities,2016,30(2):378-383(in Chinese). doi: 10.3969/j.issn.1003-9015.2016.02.018
    [2]
    NAGHIPOUR A, FA KHRI A. Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan-Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles[J]. Environmental Chemistry Letters,2016,14(2):207-213. doi: 10.1007/s10311-015-0545-z
    [3]
    WANG K, XUE B, WANG J L, et al. Efficient and selective oxi-dation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts[J]. Molecular Catalysis,2021,505:111530. doi: 10.1016/j.mcat.2021.111530
    [4]
    RIBEIRO A, SPADA E, BERTANI R, et al. Adipic acid route: Oxidation of cyclohexene vs. cyclohexane[J]. Catalysts,2020,10(12):1443. doi: 10.3390/catal10121443
    [5]
    张利梅. 新型铬系催化剂的制备及可见光催化环己烷氧化性能研究[D]. 北京: 中国石油大学, 2016.

    ZHANG Limei. The preparation of new chromium catalysts ang their catalytic performance of photocatalytic cyclohexane oxidation [D]. Beijing: China University of Petroleum, 2016(in Chinese).
    [6]
    张龙. 金属卟啉催化O2氧化环烷烃(C5-C8) C—H键规律的研究[D]. 浙江工业大学, 2020.

    ZHANG Long. Study on the regularity for oxidation of C—H bonds in cycloalkanes (C5-C8) with O2 catalyzed by metalloporphyrins[D]. Zhejiang University of Technology, 2020(in Chinese).
    [7]
    TIAN J, SHAO Q, ZHAO J, et al. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B[J]. Journal of Colloid & Interface Science,2019,541:18-29.
    [8]
    SIMSEK E B. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrup-ting compounds and pharmaceuticals under visible light irradiation[J]. Applied Catalysis B Environmental,2017,200:309-322. doi: 10.1016/j.apcatb.2016.07.016
    [9]
    MM A, HD B, SKP A. Enhanced photocatalysis perfor-mance of mechano-synthesized V2O5-TiO2 nanocompo-site for wastewater treatment: Correlation of structure with photocatalytic performance[J]. Materials Chemistry and Physics,2020,248:122947. doi: 10.1016/j.matchemphys.2020.122947
    [10]
    赵晓霞. NH2-MIL-125(Ti)及其复合物的光催化环己烷氧化性能的研究[D]. 北京: 中国石油大学(北京), 2018.

    ZHAO Xiaoxia. Photocatalytic cyclohexane oxidation performance of NH2-MIL-125(Ti) and its composites [D]. Beijing: China University of Petroleum (Beijing), 2018(in Chinese).
    [11]
    NARAYANAM P K, MAJOR S S. Langmuir blodgett based growth of rGO wrapped TiO2 nanostructures and their photocatalytic performance[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,609:125652.
    [12]
    LIU Y, ZENG X K, CHRISTOPHER D E, et al. An in situ assembled WO3-TiO2 vertical heterojunction for enhanced Z-scheme photo-catalytic activity[J]. Nanoscale,2020,12:8775. doi: 10.1039/D0NR01611J
    [13]
    AISSANI T, YAHIAOUI I, BOUDRAHEM F, et al. The combination of photocatalysis process (UV/TiO2, (P25) and UV/ZnO) with activated sludge culture for the degradation of sulfamethazine[J]. Separation Science & Technology,2018,53(9):1-11.
    [14]
    JALALAH M, FAISAL M, BOUZID H, et al. Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light[J]. Journal of Industrial and Engineering Chemistry,2015,30:183-189. doi: 10.1016/j.jiec.2015.05.020
    [15]
    LUO X, ZHU G, PENG J, et al. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation[J]. Applied Surface Science,2015,351:260-269.
    [16]
    高晓明, 尚艳岩, 刘利波, 等. Zn掺杂二维层状δ-Bi2O3纳米片的光催化固氮性能研究[J]. 无机材料学报, 2019, 34(9):967-973.

    GAO Xiaoming, SHANG Yanyan, LIU Libo, et al. Zn doping 2D layered δ-Bi2O3 nanosheets for photocatalytic nitrogen fixation[J]. Journal of inorganic materials,2019,34(9):967-973(in Chinese).
    [17]
    刘攀, 邹浩, 宋绵新, 等. Nd掺杂Bi2O3-TiO2纳米复合材料的制备、表征与模拟太阳光催化活性[J]. 科技创新与应用, 2016, 21:38-40.

    LIU Pan, ZOU Hao, SONG Mianxin, et al. Preparation, cha-racterization and simulation of solar photocatalytic acti-vity of Nd-doped Bi2O3-TiO2 nanocomposite[J]. Technology Innovation and Application,2016,21:38-40(in Chinese).
    [18]
    VIRUTHAGIRI G, KANNAN P, SHANMUGAM N. Photocatalytic rendition of Zn2+-doped Bi2O3 nanoparticles[J]. Photonics and Nanostructures: Fundamentals and Applications,2018,32:35-41. doi: 10.1016/j.photonics.2018.05.008
    [19]
    XU X, YAN Q, GU X, et al. The preparation and photocatalytic performance of BiOCl@Ag, a visible-light responsive catalyst[J]. Journal of Materials Science: Materials in Electronics,2019,30(9):8892-8902. doi: 10.1007/s10854-019-01217-z
    [20]
    陈华军, 尹国杰, 吴春来. 纳米Bi2O3/TiO2复合光催化剂的制备及性能研究[J]. 环境工程学报, 2008, 2(11):1516-1518.

    CHEN Huajun, YIN Guojie, WU Chunlai. Study on preparation and properties of nanometer Bi2O3/TiO2 composite photocatalyst[J]. Chinese Journal of Environmental Engi-neering,2008,2(11):1516-1518(in Chinese).
    [21]
    赵亚雯, 张俊可, 冯彩霞, 等. 锌掺杂OV-β-Bi2O3可见光催化活性的提高: 能带结构的调节和电荷分离的促进(英文)[J]. 无机化学学报, 2021, 37(3):541-554. doi: 10.11862/CJIC.2021.064

    ZHAO Yawen, ZHANG Junke, FENG Caixia, et al. Enhancement of visible-light catalytic activity for zn doped OV-β-Bi2O3: Regulation of electronic structure and promotion of charge separation[J]. Journal of Inorganic Materials,2021,37(3):541-554(in Chinese). doi: 10.11862/CJIC.2021.064
    [22]
    康巧梅, 吴晓雪, 刘小琳. Bi2O3/Bi2WO6光催化剂的制备及光催化性能研究[J]. 化工新型材料, 2020, 48(10):211-215.

    KANG Qiaomei, WU Xiaoxue, LIU Xiaolin. Preparation and performance of Bi2O3/Bi2WO6 photocatalyst[J]. New Chemical Materials,2020,48(10):211-215(in Chinese).
    [23]
    王桂萍, 陈晓东, 李雷. 纳米Bi2O3制备及其对AP热分解的催化性能[J]. 沈阳理工大学学报, 2019, 38(3):44-48. doi: 10.3969/j.issn.1003-1251.2019.03.009

    WANG Guiping, CHEN Xiaodong, LI Lei. Preparation of Bi2O3 nanoparticles particles and its aatalytic effect on thermal decomposition of ammonium perchlorate (AP)[J]. Journal of Shenyang Ligong University,2019,38(3):44-48(in Chinese). doi: 10.3969/j.issn.1003-1251.2019.03.009
    [24]
    JIA Z, LYU F, ZHANG L C, et al. Pt nanoparticles decorated hetero structured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light[J]. Scientific Reports,2019,9(1):7636. doi: 10.1038/s41598-019-42973-6
    [25]
    MA Z Y, HU L L, LI X B, et al. A novel nano-sized MoS2 de-corated Bi2O3 hetero-junction with enhanced photocataly-tic performance for methylene blue and tetracycline degradation[J]. Ceramics International,2019,45(13):15824-15833. doi: 10.1016/j.ceramint.2019.05.085
    [26]
    佟占鑫, 石亮, 彭超, 等. 光催化环己烷选择氧化合成环己酮/环己醇催化研究进展[J]. 化工进展, 2020, 39(8):3066-3076.

    TONG Zhanxin, SHI Liang, PENG Chao, et al. Progress in photocatalytic selective oxidation of cyclohexane to cyclohexanone/cyclohexanol[J]. Chemical Industry and Engi-neering Progress,2020,39(8):3066-3076(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1163) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return