Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
DENG Langni, YANG Zhou, ZHONG Mengjun, et al. Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004
Citation: DENG Langni, YANG Zhou, ZHONG Mengjun, et al. Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004

Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite

doi: 10.13801/j.cnki.fhclxb.20230103.004
Funds:  National Natural Science Foundation of China (51568008); Guangxi Science and Technology Major Special Project (Guike AA22068066)
  • Received Date: 2022-09-28
  • Accepted Date: 2022-12-18
  • Rev Recd Date: 2022-12-15
  • Available Online: 2023-01-04
  • Publish Date: 2023-09-15
  • To study the effect of fiber reinforced plastic (FRP) grid-engineered cementitious composite (ECC) matrix strengthened method on the deflection of reinforced concrete (RC) beams, flexural performance test was carried out on 10 RC beams. Each test variable which does effect on the deflection of RC beams strengthened with FRP grid-ECC matrix composite was analyzed, and a model for calculating the deflection of reinforced beams was derived. The test results show that the FRP grid-ECC matrix strengthened method can significantly improve the ultimate bearing capacity and flexural stiffness of the test beams, in which the ultimate load carrying capacity of the reinforced beam increases from 27.9% to 67.4%, the mid-span deflection decreases from 30.7% to 43.7%, and the reinforced beams occur suitable reinforcement damage with obvious ductile characteristics. The FRP grid has a strong influence on flexural performance of reinforced beams, and its grid thickness is proportional to the strengthening effection. The thickness, matching ratio and interface treatment method of ECC reinforcement layer have little effect on the flexural performance of the reinforced beam, and the sanding treatment improves the interface bonding performance of the reinforcement layer better than other interface treatment methods. The deflection calculation model of reinforced beams is derived based on the specification, and its calculating values agree well with the testing values, so the model is a reference for the deflection calculation of RC beams strengthened with FRP grid-ECC matrix composite.

     

  • loading
  • [1]
    杨书灵. 粘钢法和增大截面法加固梁的优缺点分析[J]. 林产工业, 2016, 43(1):61-62. doi: 10.3969/j.issn.1001-5299.2016.01.016

    YANG Shuling. The advantages and disadvantages of structure member strengthening by bonding steel plate and increasing section methods[J]. China Forest Products Industry,2016,43(1):61-62(in Chinese). doi: 10.3969/j.issn.1001-5299.2016.01.016
    [2]
    《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China’s bridge engineering research: 2021[J]. China Journal of Highay and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002
    [3]
    吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2016.

    WU Zhishen, WANG Xin, WU Gang. FRP reinforced engi-neering structure systems[M]. Beijing: Science Press, 2016, 1-15(in Chinese).
    [4]
    MIRMIRAN A, SHAHAWY M. A novel FRP-concrete composite construction for the infrastructure[J]. Proceedings of the Restructuring: America and Beyond. Reston: ASCE,1995:1-20.
    [5]
    邓朗妮, 周峥, 黄晓霞, 等. 碳纤维-光纤光栅板加固钢筋混凝土梁疲劳性能试验研究[J]. 建筑结构学报, 2022,43(12): 91-101.

    DENG Langni, ZHOU Zheng, HUANG Xiaoxia, et al. Experimental study on fatigue performance of reinforced concrete beams strengthened with CFRP-OFBG plates[J]. Journal of Building Structures, 2022, 43(12): 91-101(in Chinese).
    [6]
    DENG L N, ZHONG M J, LIU Y, et al. Study on the flexural fatigue performance of CFRP-OFBG plate reinforced damaged steel beams[J]. KSCE Journal of Civil Engineering, 2021, 25(12): 4686-4697.
    [7]
    邓朗妮, 罗日生, 钱香国, 等. 智能碳纤维板嵌入式加固矩形截面钢筋混凝土梁试验研究[J]. 建筑结构, 2019, 49(3):92-97. doi: 10.19701/j.jzjg.2019.03.017

    DENG Langni, LUO Risheng, QIAN Xiangguo, et al. Experimental study on intelligent carbon fiber slab embedded reinforced concrete beam with rectangular section[J]. Building Structure,2019,49(3):92-97(in Chinese). doi: 10.19701/j.jzjg.2019.03.017
    [8]
    蒋轩昂, 金浏, 杜修力. 配纤率对CFRP布加固大尺寸混凝土梁受剪性能影响试验研究[J]. 建筑结构学报, 2023, 44(7): 172-182.

    JIANG Xuanang, JIN Liu, DU Xiuli. Experimental study on the effect of CFRP ratio on shear performance of large-size concrete beams wrapped with CFRP sheets[J]. Journal of Building Structures, 2023, 44(7): 172-182(in Chinese).
    [9]
    董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19, 29. doi: 10.15951/j.tmgcxb.2019.10.001

    DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19, 29(in Chinese). doi: 10.15951/j.tmgcxb.2019.10.001
    [10]
    汪昕, 周竞洋, 宋进辉, 等. 大吨位FRP复合材料拉索整体式锚固理论分析[J]. 复合材料学报, 2019, 36(5):1169-1178. doi: 10.13801/j.cnki.fhclxb.20180725.002

    WANG Xin, ZHOU Jingyang, SONG Jinghui, et al. Theoretical analysis on integral anchor for large-tonnage FRP composites cable[J]. Acta Materiae Compositae Sinica,2019,36(5):1169-1178(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180725.002
    [11]
    WANG X, ZHOU J Y, DING L N, et al. Static behavior of circumferential stress-releasing anchor for large-capacity FRP cable[J]. Journal of Bridge Engineering,2020,25(1):04019114.
    [12]
    徐世烺, 尹世平, 蔡新华. 纤维编织网增强混凝土加固钢筋混凝土梁受弯性能研究[J]. 土木工程学报, 2011, 44(4):23-34. doi: 10.15951/j.tmgcxb.2011.04.012

    XU Shiliang, YIN Shiping, CAI Xinhua. Investigation on the flexural behavior of reinforced concrete beam strengthened with textile-reinforced concrete[J]. China Civil Engineering Journal,2011,44(4):23-34(in Chinese). doi: 10.15951/j.tmgcxb.2011.04.012
    [13]
    吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.

    WU Z S, WANG X, SHI J Z. Advancement of basalt fiber-reinforced polymers (BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics,2020,37(5):1-14(in Chinese).
    [14]
    滕晓丹, 姚淇耀, 陆宸宇, 等. BFRP筋与分级粒径河砂ECC粘结滑移性能试验研究[J]. 硅酸盐通报, 2022, 41(4):1264-1275. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019

    TENG Xiaodan, YAO Qiyao, LU Chenyu, et al. Experimental study on bond-slip performance between BFRP bars and ECC with graded particle size river sand[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1264-1275(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019
    [15]
    周英武, 王苏岩, 李宏男, 等. 环氧树脂基碳纤维布粘结胶性能的研究[J]. 建筑结构, 2007, 37(S1):401-405. doi: 10.19701/j.jzjg.2007.s1.124

    ZHOU Yingwu, WANG Suyan, LI Hongnan, et al. Research on performance of epoxy resin adhesive for CFRP[J]. Building Structure,2007,37(S1):401-405(in Chinese). doi: 10.19701/j.jzjg.2007.s1.124
    [16]
    姜天华, 万聪聪, 颜斌. BFRP筋与钢-PVA混杂ECC粘结性能[J]. 复合材料学报, 2023, 40(6): 3499-3512.

    JIANG Tianhua, WAN Chongchong, YAN Bin. Adhesion properties of BFRP reinforcement and steel-PVA hybrid ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3499-3512(in Chinese).
    [17]
    曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(05):632-642.

    CAO Mingli, XU Ling, ZHANG Chong. Review on micromechanical design, performance and development tendency of engineering cementitous composite[J]. Jour-nal of the Chinese Ceramic Society,2015,43(05):632-642(in Chinese).
    [18]
    DENG L N, LEI L Z, LAI S J, et al. Experimental study on the axial tensile properties of FRP grid-reinforced ECC composites[J]. Materials,2021,14(14):1-16.
    [19]
    朱忠锋, 王文炜. 玄武岩格栅增强水泥基复合材料单轴拉伸力学性能试验及本构关系模型[J]. 复合材料学报, 2017, 34(10):2367-2374.

    ZHU Zhongfeng, WANG Wenwei. Experiment on the uniaxial tensile mechanical behavior of basalt grid reinforced engineered cementitious composites and its constitutive model[J]. Acta Materiae Compositae Sinica,2017,34(10):2367-2374(in Chinese).
    [20]
    AL-GEMEEL A N, ZHUGE Y, YOUSSF O. Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent hoop tensile loading[J]. Journal of Building Engineering,2019,23:270-279. doi: 10.1016/j.jobe.2019.01.037
    [21]
    XU Y, GAO W Y, DAI J G, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Compo-site Structures,2018,189:9-26. doi: 10.1016/j.compstruct.2018.01.048
    [22]
    惠迎新, 王文炜, 朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能[J]. 复合材料学报, 2022, 39(11): 5586-5598.

    HUI Xinying, WANG Wenwei, ZHU Zhongfeng. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5586-5598(in Chinese).
    [23]
    袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8):55-65, 144. doi: 10.6052/j.issn.1000-4750.2020.08.0532

    YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-steel reinforced ECC concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65, 144(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.08.0532
    [24]
    丁里宁, 贺卫东, 汪昕, 等. BFRP网格-PCM薄面黏贴加固钢筋混凝土板抗弯性能[J]. 中南大学学报(自然科学版), 2020, 51(4):1085-1096.

    DING Lining, HE Weidong, WANG Xin, et al. Flexural behavior of reinforced concrete slabs strengthened with BFRP grids and PCM[J]. Journal of Central South University (Science and Technology),2020,51(4):1085-1096(in Chinese).
    [25]
    郑宇宙. FRP格栅增强ECC复合加固混凝土梁试验与计算方法研究[D]. 南京: 东南大学, 2018.

    ZHENG Yuzhou. Experiment and calculation method research on reinforced concrete beams strengthened with the composite of FRP grid and ECC[D]. Nanjing: Southeast University, 2018(in Chinese).
    [26]
    ZHENG Y Z, WANG W W, BRIGHAM J C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC[J]. Construction and Building Materials,2016,115(115):424-437.
    [27]
    韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网格结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4):845-858. doi: 10.13801/j.cnki.fhclxb.20190628.003

    HAN Zhenyu, ZHANG Peng, ZHENG Tianyu, et al. Research progress of forming process of fiber reinforced polymer composite grid structure[J]. Acta Materiae Compositae Sinica,2020,37(4):845-858(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190628.003
    [28]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [29]
    中国国家标准化管理委员会. 钢筋混凝土用钢: GB/T 1499.2—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Standardization Administration of the People's Republic of China. Steel for the reinforcement of concrete: GB/T 1499.2—2018[S]. Beijing: China Architecture & Building Press, 2018(in Chinese).
    [30]
    中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information Technology of the People's Republic of China. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [31]
    ARAM M R, CZADERSKI C, MOTAVALLI M. Debonding failure modes of flexural FRP-strengthened RC beams[J]. Composites Part B: Engineering,2008,39(5):826-841. doi: 10.1016/j.compositesb.2007.10.006
    [32]
    郑宇宙, 王文炜. 复材网格-UHTCC复合增强钢筋混凝土梁抗弯性能试验研究[J]. 土木工程学报, 2017, 50(6):23-32. doi: 10.15951/j.tmgcxb.2017.06.003

    ZHENG Yuzhou, WANG Wenwei. Experimental research on flexural behavior of RC beams strengthened with FRP grid-UHTCC composite[J]. China Civil Engineering Jour-nal,2017,50(6):23-32(in Chinese). doi: 10.15951/j.tmgcxb.2017.06.003
    [33]
    ZHENG A H, LIU Z Z, LI F P, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites[J]. Engineering Structures, 2021, 244:112779.
    [34]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [35]
    中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for reinforced polymer(FRP) in construction: GB 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [36]
    ACI Committee 435. Proposed revisions by committee 435 to ACI building code and commentary provisions on deflections[J]. Journal Proceedings,1978,75(6):229-238.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(9)

    Article Metrics

    Article views (802) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return