Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
WANG Ziqiang, YUAN Huan, SUN Yifei, et al. Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2226-2237. doi: 10.13801/j.cnki.fhclxb.20210820.002
Citation: WANG Ziqiang, YUAN Huan, SUN Yifei, et al. Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2226-2237. doi: 10.13801/j.cnki.fhclxb.20210820.002

Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method

doi: 10.13801/j.cnki.fhclxb.20210820.002
  • Received Date: 2021-05-20
  • Accepted Date: 2021-08-07
  • Rev Recd Date: 2021-07-26
  • Available Online: 2021-08-20
  • Publish Date: 2022-03-23
  • To develop a high performance, recyclable, low cost photocatalyst. In this work, MoS2 modified ZnO (MoS2-ZnO) nanocomposites were prepared by a hydrothermal method. The morphology and optical properties of the samples were characterized by XRD, SEM, photoluminescence spectroscopy (PL) and XPS. We find that the prepared MoS2-ZnO samples own a porous structure from SEM. And MoS2 can not only enhance the separation efficiency of photocarriers in MoS2-ZnO, but also increase the absorption of visible light region, resulting in improving the photo-catalytic and gas sensitive properties. Under simulated sunlight, the MoS2-ZnO nanocomposite exhibits high photo-catalytic degradation activity for high concentration (15 mg/L) methylene blue dye (MB). At the same time, the MoS2-ZnO-based gas sensor possesses a high sensitivity for NO2 concentration of 2.05 mg/m3. This work offers a simple strategy to prepare highly efficient visible light-driven photocatalysts and gas sensors.

     

  • loading
  • [1]
    LIC Y, MA Y Y, ZHENG S Z, et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p-n junction as highly efficient visible-light photocatalyst for organic pollutants removal[J]. Journal of Colloid and Interface Science,2020,576:291-301. doi: 10.1016/j.jcis.2020.02.115
    [2]
    WANG Z Q, ZHANG L L, ZHANG X, et al. Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light[J]. Journal of Colloid and Interface Science,2020,576:385-393. doi: 10.1016/j.jcis.2020.05.047
    [3]
    左士祥, 曹晓曼, 吴红叶, 等. g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8):2725-2733.

    ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,38(8):2725-2733(in Chinese).
    [4]
    HUANG W, YU Q M, WANG Y Y, et al. Preparation of magnetic Ni0.5Zn0.5Fe2O4/ZnO nanocomposites and their photocatalytic performances for methylene blue in aqueous solution[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7506-7515. doi: 10.1166/jnn.2020.18876
    [5]
    陈奕桦, 胡俊俊, 丁同悦, 等. CeO2/ZnO复合光催化剂制备及其可见光催化性能 [J]. 复合材料学报, 2021, 38(9): 3000-3007.

    CHEN Yihua, HU Junjun, DING Tongyue, et al. Preparation and visible light catalytic performance of CeO2/ZnO composite photocatalyst [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3000-3007(in Chinese).
    [6]
    KWON D, KIM J. Copper-doped ZnO visible light photocatalyst for degradation of methylene blue[J]. Journal of Nanoscience and Nanotechnology,2020,20(9):5608-5604.
    [7]
    XIE Y S, ZHANG N, TANG Z R, et al. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis[J]. Catalysis Today,2020,340:121-127. doi: 10.1016/j.cattod.2018.09.010
    [8]
    黄慧玲, 张隐, 甘露, 等. Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能[J]. 复合材料学报, 2020, 37(5):1148-1155.

    HUANG Huiling, ZHANG Yin, GAN Lu, et al. Preparation and synergetic visible-light photocatalysis properties of Ag-ZnO/biochar nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(5):1148-1155(in Chinese).
    [9]
    VIGNESH S, KALYANA S J. Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity[J]. Applied Surface Science,2018,449:617-630. doi: 10.1016/j.apsusc.2017.11.167
    [10]
    VASILAKI E, VAMVAKAKI M, KATSARAKIS N. Complex ZnO-TiO2 core-shell flower-like architectures with enhanced photocatalytic performance and superhydrophilicity without UV irradiation[J]. Langmuir,2018,34(31):9122-9132. doi: 10.1021/acs.langmuir.8b01619
    [11]
    王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6):1896-1910.

    WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide composite material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica,2021,38(6):1896-1910(in Chinese).
    [12]
    KWON D, KIM J. Silver-doped ZnO for photocatalytic degradation of methylene blue[J]. Korean Journal of Chemical Engineering,2020,37(7):1226-1232. doi: 10.1007/s11814-020-0520-7
    [13]
    THINH V D, LAM V D, BACH T N, et al. Enhanced optical and photocatalytic properties of Au/Ag nanoparticle-decorated ZnO films[J]. Journal of Electronic Materlals,2020,49(4):2625-2632. doi: 10.1007/s11664-020-07973-7
    [14]
    YU Z J, KUMA R M R, CHU Y, et al. Photocatalytic decomposition of RHB by newlydesigned and highly effective CF@ZnO/CdS hierarchical heterostructures[J]. ACS Sustainable Chemistry & Engineering,2018,6:155-164.
    [15]
    WANG H Y, LI S Y, WAN Q, et al. Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2020,577:38-47. doi: 10.1016/j.jcis.2020.05.034
    [16]
    KUMAR V, SHUKLA R K, SHAKYA J. Effect of ultraviolet irradiation on photo-physical and surface electronic properties of MoS2[J]. Journal of Nanoscience and Nanotechology,2020,20(10):6500-6504. doi: 10.1166/jnn.2020.18581
    [17]
    XU Y M, YAN L H, SI J H, et al. Nonlinear absorption pro-perties and carrier dynamics in MoS2/graphene Van Der Waals heterostructures[J]. Carbon,2020,165:421-427. doi: 10.1016/j.carbon.2020.04.092
    [18]
    KEERTI R, ANAVEEN K, KAUSHIK P. Fabrication of flexible La-MoS2 hybrid-heterostructure based sensor for NO2 gas sensing at room temperature[J]. Nanotechnology,2020,31(39):395504. doi: 10.1088/1361-6528/ab9c55
    [19]
    DONG H C, LI J Z, CHEN M G, et al. High-throughput production of ZnO-MoS2-graphene heterostructures for highly efficient photocatalytic hydrogen evolution[J]. Materials,2019,12(14):2233. doi: 10.3390/ma12142233
    [20]
    ZHANG L, YIN J J, WEI K, et al. Fabrication of hierarchical SrTiO3@MoS2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions[J]. Nanotechnology,2020,31:205604. doi: 10.1088/1361-6528/ab70ff
    [21]
    JOYNER J, OLIVEIRA E F, YAMAGUCHI H, et al. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts[J]. ACS Applied Materials & Interfaces,2020,12:12629-12638.
    [22]
    HO T A, BAE C, JOE J, et al. Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays[J]. ACS Applied Materials & Interfaces,2019,11:37586-37594.
    [23]
    LI Y, WANG Z, ZHAO H J, et al. 3D MoS2@TiO2@poly (methyl methacrylate) nanocomposite with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2019,557:709-721. doi: 10.1016/j.jcis.2019.09.074
    [24]
    ZHANG Z L, WANG Z L, HENG L Y, et al. Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanoparticles[J]. Journal of the Physical Society of Japan,2018,87:54402. doi: 10.7566/JPSJ.87.054402
    [25]
    KAUR M, UMAR A, MEHTA S K, et al. Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst[J]. Materials,2018,11(11):2254. doi: 10.3390/ma11112254
    [26]
    FU Y M, REN Z Q, WU J Z, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances[J]. Applied Catalysis B: Environmental,2021,285:119785. doi: 10.1016/j.apcatb.2020.119785
    [27]
    WANG J Y, DENG J H, LI Y B, et al. ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique[J]. Ceramics International,2020(46):11427-11431.
    [28]
    ZHAO S F, WANG G J, LIAO J C, et al. Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities[J]. Applied Surface Science,2018,456:808-816. doi: 10.1016/j.apsusc.2018.06.103
    [29]
    LUO K Y, ZHANG Q P, YUAN H, et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag[J]. Ceramics International,2021,47:48-56. doi: 10.1016/j.ceramint.2020.06.102
    [30]
    ZHANG Q P, PANG Z M, HU W Y, et al. Performance degradation mechanism of the light-activated room temperature NO2 gas sensor based on Ag-ZnO nanoparticles[J]. Applied Surface Science,2021,541:148418. doi: 10.1016/j.apsusc.2020.148418
    [31]
    胡文宇, 王笑乙, 袁欢, 等. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10):10018-10023. doi: 10.11896/cldb.19050066

    HU Wenyu, WANG Xiaoyi, YUAN Huan, et al. Study on sol-gel synthesis and photocatalytic properties of CuO-ZnO nanocomposites deposited by Ag[J]. Materials Review B: Research Papers,2020,34(10):10018-10023(in Chinese). doi: 10.11896/cldb.19050066
    [32]
    井立强, 袁福龙, 侯海鸽, 等. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J]. 中国科学(B辑):化学, 2004(4):310-314.

    JING Liqiang, YUAN Fulong, HOU Haige, et al. The relationship between the surface oxygen vacancy of ZnO nanoparticles and their photoluminescence and photocatalytic properties[J]. Science in China B: Chemistry,2004(4):310-314(in Chinese).
    [33]
    YUAN H, XU M, DUX S. Effects of Co doping on the structural and optical properties of Zn-CuO thin films[J]. Materials Letters,2015,154:94-97. doi: 10.1016/j.matlet.2015.04.069
    [34]
    LIU Y T, ZHANG Q P, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. doi: 10.1016/j.apsusc.2019.01.137
    [35]
    GE L, HAN C C, XIAO X L, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy,2013,38(17):6960-6969. doi: 10.1016/j.ijhydene.2013.04.006
    [36]
    ZHAO D W, WU T T, ZHOU Y. Dual II heterojunctions metallic phase MoS2/ZnS/ZnO ternary composite with superior photocatalytic performance for removing contaminants[J]. Chemistry A European Journal,2019,25(41):9710-9720.
    [37]
    杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的 ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38:2259-2269.

    DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica,2021,38:2259-2269(in Chinese).
    [38]
    LI J, YUAN H, ZHANG Q P, et al. Designed Ag-decorated Mn: ZnO nanocomposite: Facile synthesis, and enhanced visible light absorption and photogenerated carrier separation[J]. Physical Chemistry Chemical Physics,2020,46(22):27272-27279.
    [39]
    TAN Y H, YU K, LI J Z, et al. MoS2@ZnO nanoheterojunctions with enhanced photocatalysis and field emission properties[J]. Journal of Applied Physics,2014,116(6):064305. doi: 10.1063/1.4893020
    [40]
    SOOHO C, ZHANG S L, WOOCHUL Y. Layer-number-dependent work function of MoS2 nanoflakes[J]. Journal of the Korean Physical Society,2014,64(10):1550-1555. doi: 10.3938/jkps.64.1550
    [41]
    GUO W W, LIU T M, ZHANG H J, et al. Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology[J]. Sensors and Actuators B: Chemical,2012,166/167:492-499.
    [42]
    YAN H H, SONG P, ZHANG S, et al. Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol[J]. RSC Advances,2015,97:79593-79599.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1361) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return