Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LI Jiayu, FU Yutong, LI Yuanqing, et al. Research progress on mechanical performance optimization and functional design of additive manufactured biomimetic structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4435-4456. doi: 10.13801/j.cnki.fhclxb.20240423.004
Citation: LI Jiayu, FU Yutong, LI Yuanqing, et al. Research progress on mechanical performance optimization and functional design of additive manufactured biomimetic structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4435-4456. doi: 10.13801/j.cnki.fhclxb.20240423.004

Research progress on mechanical performance optimization and functional design of additive manufactured biomimetic structures

doi: 10.13801/j.cnki.fhclxb.20240423.004
Funds:  National Natural Science Foundation of China-Youth Science Fund Projects and Key Projects (12202082; 12332008); Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX0608); The 9th China Association for Science and Technology Young Talent Lifting Project (2023QNRC001); Chongqing Postdoctoral Innovative Talent Support Program (CQBX202206)
  • Received Date: 2024-02-27
  • Accepted Date: 2024-04-04
  • Rev Recd Date: 2024-03-25
  • Available Online: 2024-04-24
  • Publish Date: 2024-09-15
  • Biomimetic structures can partly overcome the shortcomings of traditional structures and materials, thereby achieving high performance and diversified functions. Additive manufacturing (3D printing) technology can achieve the formation of complex structures, making it possible to prepare biomimetic structures with superior mechanical properties and more diverse functions. With the continuous development of additive manufacturing technology, the combination of additive manufacturing technology and biomimetic structure design is receiving increasing interests. Simultaneously, additive manufactured biomimetic structures have good mechanical properties and functions, that has attracted attentions in the fields such as aerospace, rail transportation, mechanical industry, and biomedical engineering, etc. This article summarizes the research progress on 3D printed biomimetic structures in recent years, majorly focusing on mechanical performance optimization and functionality. The optimized mechanical properties mainly include energy absorption, high strength, and high stiffness, while the functions are related to sensing, driving, medicine and so on. Finally, this article provides an outlook on the advantages, existing research limitations, and future development of additive manufactured biomimetic structures.

     

  • loading
  • [1]
    DAI H, DAI W, HU Z, et al. Advanced composites inspired by biological structures and functions in nature: Architecture design, strengthening mechanisms, and mechanical-functional responses[J]. Advanced Science, 2023, 10(14): 2207192. doi: 10.1002/advs.202207192
    [2]
    CHEN Y, MA Y, YIN Q, et al. Advances in mechanics of hierarchical composite materials[J]. Composites Science and Technology, 2021, 214: 108970. doi: 10.1016/j.compscitech.2021.108970
    [3]
    WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23-36. doi: 10.1038/nmat4089
    [4]
    RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone[J]. Medical Engineering & Physics, 1998, 20(2): 92-102.
    [5]
    JÄGER I, FRATZL P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles[J]. Biophysical Journal, 2000, 79(4): 1737-1746. doi: 10.1016/S0006-3495(00)76426-5
    [6]
    NALLA R K, KRUZIC J J, KINNEY J H, et al. Mechanistic aspects of fracture and R-curve behavior in human cortical bone[J]. Biomaterials, 2005, 26(2): 217-231. doi: 10.1016/j.biomaterials.2004.02.017
    [7]
    SCHWEIDLER S, BOTROS M, STRAUSS F, et al. High-entropy materials for energy and electronic applications[J]. Nature Reviews Materials, 2024, 9(4): 266-281. doi: 10.1038/s41578-024-00654-5
    [8]
    KETEN S, XU Z, IHLE B, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk[J]. Nature Materials, 2010, 9(4): 359-367. doi: 10.1038/nmat2704
    [9]
    YU H, LI H, SUN X, et al. Biomimetic flexible sensors and their applications in human health detection[J]. Biomimetics, 2023, 8(3): 8030293.
    [10]
    MA X, LIU J, ZHANG S, et al. Recent trends in bionic stepping piezoelectric actuators for precision positioning: A review[J]. Sensors and Actuators A: Physical, 2023, 364: 114830. doi: 10.1016/j.sna.2023.114830
    [11]
    MA Y, DENG B, HE R, et al. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication[J]. Heliyon, 2024, 10(3): 24593. doi: 10.1016/j.heliyon.2024.e24593
    [12]
    SIDDIQUE S H, HAZELL P J, WANG H, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption–A review[J]. Additive Manufacturing, 2022, 58: 103051. doi: 10.1016/j.addma.2022.103051
    [13]
    CRAPNELL R D, KALINKE C, SILVA L R G, et al. Additive manufacturing electrochemistry: An overview of producing bespoke conductive additive manufacturing filaments[J]. Materials Today, 2023, 71: 73-90. doi: 10.1016/j.mattod.2023.11.002
    [14]
    DI L, YANG Y, WANG S. Additive manufacturing thermoplastic recycling: Profit-driven planning and optimization[J]. Journal of Cleaner Production, 2024, 436: 140598. doi: 10.1016/j.jclepro.2024.140598
    [15]
    AI Y, YAN Y, YUAN P, et al. The numerical investigation of cladding layer forming process in laser additive manufacturing with wire feeding[J]. International Journal of Thermal Sciences, 2024, 196: 108669. doi: 10.1016/j.ijthermalsci.2023.108669
    [16]
    IMRAN R, Al RASHID A, POLAT R, et al. Numerical study on effect of process parameters on material extrusion 3D printing (ME3DP) for porous bone tissue engineering scaffolds[J]. Results in Engineering, 2024, 22: 102046. doi: 10.1016/j.rineng.2024.102046
    [17]
    MORA S, PUGNO N M, MISSERONI D. 3D printed architected lattice structures by material jetting[J]. Materials Today, 2022, 59: 107-132. doi: 10.1016/j.mattod.2022.05.008
    [18]
    KANISHKA K, ACHERJEE B. Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges[J]. Journal of Manufacturing Processes, 2023, 107: 574-619. doi: 10.1016/j.jmapro.2023.10.024
    [19]
    WU Y, FANG J, WU C, et al. Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption[J]. International Journal of Mechanical Sciences, 2023, 246: 108102. doi: 10.1016/j.ijmecsci.2023.108102
    [20]
    ZOU M, XU S, WEI C, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo[J]. Thin-Walled Structures, 2016, 101: 222-230. doi: 10.1016/j.tws.2015.12.023
    [21]
    HU D, WANG Y, SONG B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing[J]. Composites Part B: Engineering, 2019, 162: 21-32. doi: 10.1016/j.compositesb.2018.10.095
    [22]
    XIANG J W, DU J X, LI D C, et al. Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra[J]. Journal of Materials Science, 2017, 52(22): 13247-13260. doi: 10.1007/s10853-017-1420-z
    [23]
    TSANG H H, RAZA S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy[J]. Composite Structures, 2018, 195: 199-210. doi: 10.1016/j.compstruct.2018.04.057
    [24]
    AN X Y, FAN H L. Hybrid design and energy absorption of luffa-sponge-like hierarchical cellular structures[J]. Materials & Design, 2016, 106: 247-257.
    [25]
    TANE M, ZHAO F, SONG Y H, et al. Formation mechanism of a plateau stress region during dynamic compression of porous iron: Interaction between oriented cylindrical pores and deformation twins[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 591: 150-158. doi: 10.1016/j.msea.2013.10.078
    [26]
    RHEE H, TUCKER M T, WHITTINGTON W R, et al. Structure-property responses of bio-inspired synthetic foams at low and high strain rates[J]. Science and Engineering of Compsite Materials, 2015, 22(4): 365-373.
    [27]
    ZHANG Z, SONG B, YAO Y G, et al. Bioinspired, simulation-guided design of polyhedron metamaterial for simultaneously efficient heat dissipation and energy absorption[J]. Advanced Materials Technologies, 2022, 7(10): 00076.
    [28]
    YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design, 2017, 135: 275-290.
    [29]
    LEE N, HORSTEMEYER M F, RHEE H, et al. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak[J]. Journal of the Royal Society Interface, 2014, 11(96): 0274.
    [30]
    HA N S, LU G X, XIANG X M. Energy absorption of a bio-inspired honeycomb sandwich panel[J]. Journal of Materials Science, 2019, 54(8): 6286-6300. doi: 10.1007/s10853-018-3163-x
    [31]
    SUN Z, SHI S S, GUO X, et al. On compressive properties of composite sandwich structures with grid reinforced honeycomb core[J]. Composites Part B-Engineering, 2016, 94: 245-252. doi: 10.1016/j.compositesb.2016.03.054
    [32]
    YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11. doi: 10.1016/j.tws.2018.01.014
    [33]
    ZHANG W, YIN S, YU T X, et al. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb[J]. International Journal of Impact Engineering, 2019, 125: 163-172. doi: 10.1016/j.ijimpeng.2018.11.014
    [34]
    HE Q, FENG J, CHEN Y J, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading[J]. Journal of Sandwich Structures & Materials, 2020, 22(3): 771-796.
    [35]
    PENG C X, FOX K, QIAN M, et al. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling[J]. Thin-Walled Structures, 2021, 161: 107471. doi: 10.1016/j.tws.2021.107471
    [36]
    PELANCONI M, ORTONA A. Nature-inspired, ultra-lightweight structures with gyroid cores produced by additive manufacturing and reinforced by unidirectional carbon fiber ribs[J]. Materials, 2019, 12(24): 4134. doi: 10.3390/ma12244134
    [37]
    RUMNEY R M H, ROBSON S C, KAO A P, et al. Biomimetic generation of the strongest known biomaterial found in limpet tooth[J]. Nature Communications, 2022, 13(1): 3753. doi: 10.1038/s41467-022-31139-0
    [38]
    TAVANGARIAN F, SADEGHZADE S, DAVAMI K. A novel biomimetic design inspired by nested cylindrical structures of spicules[J]. Journal of Alloys and Compounds, 2021, 864: 158197. doi: 10.1016/j.jallcom.2020.158197
    [39]
    PATADIYA J, WANG X G, JOSHI G, et al. 3D-printed biomimetic hierarchical nacre architecture: Fracture behavior and analysis[J]. Acs Omega, 2023, 8(21): 18449-18461. doi: 10.1021/acsomega.2c08076
    [40]
    SUN J X, YU S X, JAMES W Z, et al. 3D printing of ceramic composite with biomimetic toughening design[J]. Additive Manufacturing, 2022, 58: 103027. doi: 10.1016/j.addma.2022.103027
    [41]
    HE Q Q, ZENG Y S, JIANG L M, et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor[J]. Nature Communications, 2023, 14(1): 6477. doi: 10.1038/s41467-023-41740-6
    [42]
    GUO X H, ZHOU D Y, HONG W Q, et al. Biologically emulated flexible sensors with high sensitivity and low hysteresis: Toward electronic skin to a sense of touch[J]. Small, 2022, 18(32): 2203044. doi: 10.1002/smll.202203044
    [43]
    LI C H, SCHRAMMA N, WANG Z J, et al. Ultrasensitive and robust mechanoluminescent living composites[J]. Science Advances, 2023, 9(42): 8643. doi: 10.1126/sciadv.adi8643
    [44]
    SUN F Y, LIU L F, LIU T, et al. Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor[J]. Nature Communications, 2023, 14(1): 130. doi: 10.1038/s41467-023-35810-y
    [45]
    CIKALLESHI K, NEXHA A, KISTER T, et al. A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing[J]. Science Advances, 2023, 9(46): 8492. doi: 10.1126/sciadv.adi8492
    [46]
    ESTEVES C, PALMA S, COSTA H M A, et al. Tackling humidity with designer ionic liquid-based gas sensing soft materials[J]. Advanced Materials, 2022, 34(8): 2107205. doi: 10.1002/adma.202107205
    [47]
    YOUSSEF S M, SOLIMAN M, SALEH M A, et al. Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning[J]. Scientific Reports, 2022, 12(1): 21861. doi: 10.1038/s41598-022-26179-x
    [48]
    MORADI A, RAFIEI H, DALIRI M, et al. Clinical implementation of a bionic hand controlled with kinetic omyographic signals[J]. Scientific Reports, 2022, 12(1): 14805. doi: 10.1038/s41598-022-19128-1
    [49]
    LI J F, SOLDATOV I V, TANG X C, et al. Metallic Mimosa pudica: A 3D biomimetic buckling structure made of metallic glasses[J]. Science Advances, 2022, 8(31): 7658. doi: 10.1126/sciadv.abm7658
    [50]
    DE PASCALI C, NASELLI G A, PALAGI S, et al. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate[J]. Science Robotics, 2022, 7(68): 4155. doi: 10.1126/scirobotics.abn4155
    [51]
    WANG Q, LI L, LU X L, et al. Programmable design and fabrication of 3D variable-stiffness structure based on patterned graphene-heating network[J]. Advanced Intelligent Systems, 2023, 5(7): 00032.
    [52]
    KESHTIBAN M M, ZAND M M, EBADI A, et al. PDMS-based porous membrane for medical applications: Design, development, and fabrication[J]. Biomedical Materials, 2023, 18(4): 045012. doi: 10.1088/1748-605X/acbddb
    [53]
    ZHANG M, LIN R C, WANG X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration[J]. Science Advances, 2020, 6(12): 6725. doi: 10.1126/sciadv.aaz6725
    [54]
    KESHTIBAN M M, TAGHVAEI H, NOROOZI R, et al. Biological and mechanical response of graphene oxide surface-treated polylactic acid 3D-printed bone scaffolds: Experimental and numerical approaches[J]. Advanced Engineering Materials, 2024, 26(3): 01260.
    [55]
    YAN W Q, MAIMAITIMIN M, WU Y, et al. Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process[J]. Science Advances, 2023, 9(45): 8138. doi: 10.1126/sciadv.adg8138
    [56]
    JORGENSEN A M, GORKUN A, MAHAJAN N, et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo[J]. Science Translational Medicine, 2023, 15(716): 7547. doi: 10.1126/scitranslmed.adf7547
    [57]
    ZHU Z, WANG J, PEI X B, et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery[J]. Science Advances, 2023, 9(25): 2213. doi: 10.1126/sciadv.adh2213
    [58]
    ZHOU Y, YANG H R, WANG X Y, et al. A mosquito mouthpart-like bionic neural probe[J]. Microsystems & Nanoengineering, 2023, 9(1): 88.
    [59]
    FAN X H, DENG C S, GAO H, et al. 3D printing of nanowrinkled architectures via laser direct assembly[J]. Science Advances, 2022, 8(32): 9942. doi: 10.1126/sciadv.abn9942
    [60]
    AN Q, LI D W, LIAO W H, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures[J]. Advanced Materials, 2023, 35(26): 00659.
    [61]
    WANG Z L, ZHAN Z H, CHEN L, et al. 3D-printed bionic solar evaporator[J]. Solar Rrl, 2022, 6(7): 2101063. doi: 10.1002/solr.202101063
    [62]
    HU Z Y, ZHANG Y L, PAN C, et al. Miniature optoelectronic compound eye camera[J]. Nature Communications, 2022, 13(1): 5634. doi: 10.1038/s41467-022-33072-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (377) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return