Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
DONG Yushuang, ZHANG Xuejun, TIAN Yanhong, et al. Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001
Citation: DONG Yushuang, ZHANG Xuejun, TIAN Yanhong, et al. Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001

Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties

doi: 10.13801/j.cnki.fhclxb.20210918.001
  • Received Date: 2021-07-29
  • Accepted Date: 2021-08-31
  • Rev Recd Date: 2021-08-25
  • Available Online: 2021-09-22
  • Publish Date: 2022-08-31
  • In order to improve the surface wettability of high modulus carbon fibers (HMCF) and enhance the interfacial properties of their composites, a few-layer Ti3C2Tx-MXene aqueous dispersion with a size of 100-500 nm was mixed with an aqueous epoxy emulsion to prepare an Ti3C2Tx-MXene modified sizing agent for HMCF by mechanical blending method. The continuous sizing technology was used to construct a characteristic coating rich in Ti3C2Tx-MXene on the surface of HMCF in order to improve the interface bonding of HMCF/epoxy resin (EP) composites. The surface morphology, surface chemical state and surface wettability of HMCF were characterized by SEM, XPS and dynamic contact angle test, and the interface bonding of HMCF/EP composites was analyzed and characterized by interlaminar shear strength (ILSS) and cross-sectional morphology tests. Finally, the interface enhancement mechanism of Ti3C2Tx-Mxene/EP sizing agent-modified HMCF/EP composites was investigated with the shear damage models of the composites. The results show that after the surface treatment with Ti3C2Tx-MXene modified sizing agent, the O/C (atomic ratio) of the HMCF surface is increased, and a certain amount of nano-scale convex micromechanical structures are introduced to improve the surface wettability of HMCF. When the solid content of the epoxy emulsion sizing agent is 0.8% and the concentration of Ti3C2Tx-MXene is 1.0 mg/mL, the ILSS of the HMCF/EP composites increases by 23.8% to 85.9 MPa.

     

  • loading
  • [1]
    BARAL N, DAVIES P, BALEY C, et al. Delamination behaviour of very high modulus carbon/epoxy marine composites[J]. Composites Science and Technology,2008,68(3-4):995-1007. doi: 10.1016/j.compscitech.2007.07.022
    [2]
    沈曾民, 迟伟东, 张学军, 等. 高模量碳纤维的现状及发展(1)[J]. 高科技纤维与应用, 2010, 35(3):5-13. doi: 10.3969/j.issn.1007-9815.2010.03.002

    SHEN Zengmin, CHI Weidong, ZHANG Xuejun, et al. The current status and development trend of high modulus carbon fibers (1)[J]. Hi-Tech Fiber & Application,2010,35(3):5-13(in Chinese). doi: 10.3969/j.issn.1007-9815.2010.03.002
    [3]
    陶积柏, 黎昱, 张玉生. 高模量碳纤维在中国宇航结构产品上的应用现状及实现自我保障的建议[J]. 材料科学与工艺, 2015, 23(6):98-103. doi: 10.11951/j.issn.1005-0299.20150618

    TAO Jibai, LI Yu, ZHANG Yusheng. Application-status of high modulus carbon fiber in domestic aerospace structural products and suggestions for self-supply[J]. Materials Science and Technology,2015,23(6):98-103(in Chinese). doi: 10.11951/j.issn.1005-0299.20150618
    [4]
    HAO R T, JIAO X W, ZHANG X J, et al. Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber[J]. Applied Surface Science,2019,485:304-313. doi: 10.1016/j.apsusc.2019.04.184
    [5]
    LIN J W, XU P, WANG L L, et al. Multi-scale interphase construction of self-assembly naphthalenediimide/multi-wall carbon nanotube and enhanced interfacial properties of high-modulus carbon fiber composites[J]. Composites Science and Technology,2019,184:107855. doi: 10.1016/j.compscitech.2019.107855
    [6]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [7]
    ZHANG S, LIU W B, HAO L F, et al. Preparation of carbon nanotube/carbon fiber hybrid fiber by combining electrophoretic deposition and sizing process for enhancing interfacial strength in carbon fiber composites[J]. Composites Science and Technology,2013,88:120-125. doi: 10.1016/j.compscitech.2013.08.035
    [8]
    KIM K J, KIM J, YU W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258-267. doi: 10.1016/j.carbon.2012.11.037
    [9]
    TIWARI S, BIJWE J. Surface treatment of carbon fibers-A review[J]. Procedia Technology,2014,14:505-512. doi: 10.1016/j.protcy.2014.08.064
    [10]
    LI L, YAN C, XU H, et al. Improving the interfacial properties of carbon fiber-epoxy resin composites with a graphene-modified sizing agent[J]. Journal of Applied Polymer Science,2018,136(9):47122.
    [11]
    WU G S, MA L C, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes[J]. Materials & Design,2016,89:1343-1349.
    [12]
    KARAKASSIDES A, GANGULY A, TSIRKA K, et al. Radially grown graphene nanoflakes on carbon fibers as reinforcing interface for polymer composites[J]. ACS Applied Nano Materials,2020,3(3):2402-2413. doi: 10.1021/acsanm.9b02536
    [13]
    ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials and Interfaces,2012,4(3):1543-1552. doi: 10.1021/am201757v
    [14]
    LIU L, YAN F, LI M, et al. Improving interfacial properties of hierarchical reinforcement carbon fibers modified by graphene oxide with different bonding types[J]. Composites Part A: Applied Science and Manufacturing,2018,107:616-625. doi: 10.1016/j.compositesa.2018.02.009
    [15]
    YANG Y, LU C X, SU X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters,2007,61(17):3601-3604. doi: 10.1016/j.matlet.2006.11.121
    [16]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [17]
    MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide mxene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [18]
    TIAN S, CHENG G J, TANG Z F, et al. Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure[J]. Ceramics International,2020,46(18):28949-28954. doi: 10.1016/j.ceramint.2020.08.065
    [19]
    LIU L, YING G B, HU C, et al. Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites[J]. ACS Applied Nano Materials,2019,2(9):5553-5562. doi: 10.1021/acsanm.9b01127
    [20]
    YUAN X Y, JIANG J, WEI H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology,2021,201:108496. doi: 10.1016/j.compscitech.2020.108496
    [21]
    GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [22]
    HONG V M, HUANG H, ZHOU K, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications[J]. Journal of Materials Chemistry A,2017,5(7):3039-3068. doi: 10.1039/C6TA06772G
    [23]
    全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料层间剪切强度试验方法: GB 3357—1982[S]. 北京: 中国标准出版社, 1982.

    National Technical Committee of Standardization for Fiber Reinfoeced Plastics. Test method for interlaminar shear strength of unidirectional fiber reinforced plastics: GB 3357—1982[S]. Beijing: China Standards Press, 1982(in Chinese).
    [24]
    HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019.
    [25]
    HE L X, WANG J L, WANG B B, et al. Large-scale production of simultaneously exfoliated and functionalized MXenes as promising flame retardant for polyurethane[J]. Composites Part B: Engineering,2019,179:107486. doi: 10.1016/j.compositesb.2019.107486
    [26]
    UNTERWEGER C, DUCHOSLAV J, STIFTER D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology,2015,108:41-47. doi: 10.1016/j.compscitech.2015.01.004
    [27]
    CHI X F, LI M X, LIANG M, et al. Enhanced interfacial interactions of carbon fiber/epoxy resin composites by regulating PEG-E51 and graphene oxide complex sizing at the interface[J]. Polymers for Advanced Technologies,2021,32(9):3458-3473. doi: 10.1002/pat.5357
    [28]
    DENG C, JIANG J J, LIU F, et al. Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property[J]. Surface and Coatings Technology,2015,272:176-181. doi: 10.1016/j.surfcoat.2015.04.008
    [29]
    ZHANG T, ZHAO Y Q, LI H F, et al. Effect of polyurethane sizing on carbon fibers surface and interfacial adhesion of fiber/polyamide 6 composites[J]. Journal of Applied Polymer Science,2018,135(16):46111. doi: 10.1002/app.46111
    [30]
    JIANG D W, LIU L, WU G S, et al. Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase[J]. Polymer Composites,2017,38(11):2425-2432. doi: 10.1002/pc.23828
    [31]
    MA L C, ZHU Y Y, FENG P F, et al. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent[J]. Composites Part B: Engineering,2019,176:107078. doi: 10.1016/j.compositesb.2019.107078
    [32]
    PENG Q Y, LI Y B, HE X D, et al. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization[J]. Composites Science and Technology,2013,74:37-42. doi: 10.1016/j.compscitech.2012.10.005
    [33]
    LIU P F, YANG Y H. Finite element analysis of the competition between crack deflection and penetration of fiber-reinforced composites using virtual crack closure technique[J]. Applied Composite Materials,2014,21(5):759-771. doi: 10.1007/s10443-013-9375-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1358) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return