FANG Jinrong, HU Junshan, CHEN Peilin, et al. Mechanical characterization of mode I fracture at the interface of CFRP single-sided patch repair of damaged aerospace titanium alloy components[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2504-2517. DOI: 10.13801/j.cnki.fhclxb.20240716.005
Citation: FANG Jinrong, HU Junshan, CHEN Peilin, et al. Mechanical characterization of mode I fracture at the interface of CFRP single-sided patch repair of damaged aerospace titanium alloy components[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2504-2517. DOI: 10.13801/j.cnki.fhclxb.20240716.005

Mechanical characterization of mode I fracture at the interface of CFRP single-sided patch repair of damaged aerospace titanium alloy components

Funds: Natural Science Foundation of Jiangsu Province (BK20231444); Helicopter Drivetrain Capability Enhancement Pre-Research Project (TC230Y04S-37); Special Funds for Basic Research Operating Costs of Central Universities (NT2024013)
More Information
  • Received Date: May 19, 2024
  • Revised Date: June 17, 2024
  • Accepted Date: July 07, 2024
  • Available Online: July 25, 2024
  • Published Date: July 18, 2024
  • To investigate the mechanical response and fracture characteristics of adhesively bonded titanium alloy structures under mode I loading conditions, this study employed a co-curing method to fabricate repair specimens with single-sided carbon fiber reinforced polymer (CFRP) patches bonded to titanium alloy substrates. The effects of patch thickness, ply orientation, and surface treatment on mode I interfacial fracture mechanics were systematically examined using double cantilever beam (DCB) tests. Peak load and interlaminar fracture toughness were utilized as quantitative metrics to evaluate the overall repair performance. Furthermore, failure modes and fracture surface morphologies at both macroscopic and microscopic scales were analyzed to elucidate the underlying failure mechanisms of mode I static delamination in the titanium alloy/CFRP repaired specimens. The results reveal that increasing the thickness of the patch leads to a rising trend in both the bending stiffness of the specimen and the extent of fiber bridging. The mode I fracture performance of the repair interface improves significantly, with failure modes consistently evolving from adhesive failure of the glue film and cohesive damage to failure at the CRFP interface. For multidirectional laminates, the 0° ply at the bottom of the patch exhibits the strongest constraint on delamination paths, while the 45° ply effectively induces inter-ply crack migration, enhancing the toughening effect. Notably, the two-dimensional woven patch demonstrates the best repair performance. For surface-treated specimens, cohesive failure of the adhesive film is the predominant failure mode. Specifically, sulfuric acid anodization provides the most significant toughening effect, increasing fracture toughness by 3.8% and 1.9% compared to quartz sandblasting and 400# sandpaper abrasion, respectively, and by 19.2% compared to untreated specimens. These conclusions provide references for the optimized design and practical application of damage repair processes under mode I loading conditions for titanium alloy components.

  • [1]
    郝建滨, 李旭东, 穆志韬. 金属裂纹板复合材料胶接修补强度的弹塑性有限元预测[J]. 复合材料学报, 2016, 33(3): 643-649.

    HAO Jianbin, LI Xudong, MU Zhitao. Repair strength predictions of cracked metal plates bonded with composite patches using elastic-plastic finite element method[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 643-649(in Chinese).
    [2]
    ABUSREA M R, ARAKAWA K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates[J]. Composites Part B: Engineering, 2016, 97: 368-373. DOI: 10.1016/j.compositesb.2016.05.005
    [3]
    XIONG J J, SHENOI R A. Integrated experimental screening of bonded composites patch repair schemes to notched aluminum-alloy panels based on static and fatigue strength concepts[J]. Composite Structures, 2008, 83(3): 266-272. DOI: 10.1016/j.compstruct.2007.04.019
    [4]
    CHEN D, ARAKAWA K, JIANG S. Novel joints developed from partially un-moulded carbon-fibre-reinforced laminates[J]. Journal of Composite Materials, 2015, 49(14): 1777-1786. DOI: 10.1177/0021998314540195
    [5]
    SUN Y, TANG M, RONG Z, et al. An experimental investigation on the low-velocity impact response of carbon–aramid/epoxy hybrid composite laminates[J]. Journal of Reinforced Plastics and Composites, 2017, 36(6): 422-434. DOI: 10.1177/0731684416680893
    [6]
    KAHRAMAN R, SUNAR M, YILBAS B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive[J]. ‌Journal of Materials Processing Technology, 2008, 205(1-3): 183-189. DOI: 10.1016/j.jmatprotec.2007.11.121
    [7]
    SHAMS S S, EL-HAJJAR R F. Overlay patch repair of scratch damage in carbon fiber/epoxy laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 148-156. DOI: 10.1016/j.compositesa.2013.03.005
    [8]
    SUN L, LI C, TIE Y, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives, 2019, 95: 102402. DOI: 10.1016/j.ijadhadh.2019.102402
    [9]
    HU J, LI C, FANG J, et al. Comparison of repair methods for cracked titanium alloy aircraft structures with single-sided adhesively bonded composite patches[J]. Materials, 2023, 16(19): 6361. DOI: 10.3390/ma16196361
    [10]
    CHOUDHURY M R, DEBNATH K. Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites[J]. International Journal of Adhesion and Adhesives, 2020, 99: 102557. DOI: 10.1016/j.ijadhadh.2020.102557
    [11]
    HU J, KANG R, FANG J, et al. An experimental and parametrical study on repair of cracked titanium airframe structures with single-side bonded carbon fiber-reinforced polymer prepreg patches[J]. Composite Structures, 2024, 338: 118102. DOI: 10.1016/j.compstruct.2024.118102
    [12]
    毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1): 121-131.

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 121-131(in Chinese).
    [13]
    SHAH O R, TARFAOUI M. Effect of adhesive thickness on the mode I and II strain energy release rates. Comparative study between different approaches for the calculation of Mode I & II SERR's[J]. Composites Part B: Engineering, 2016, 96: 354-363. DOI: 10.1016/j.compositesb.2016.04.042
    [14]
    TIE Y, HOU Y, LI C, et al. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches[J]. Composite Structures, 2018, 190: 179-188. DOI: 10.1016/j.compstruct.2018.01.075
    [15]
    JEFFERSON ANDREW J, SRINIVASAN S M, AROCKIARAJAN A. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates[J]. Composite Structures, 2018, 184: 848-859. DOI: 10.1016/j.compstruct.2017.10.070
    [16]
    PARK S, ROY R, KWEON J, et al. Strength and failure modes of surface treated CFRP secondary bonded single-lap joints in static and fatigue tensile loading regimes[J]. Composites Part A: Applied Science and Manufacturing, 2020, 134: 105897. DOI: 10.1016/j.compositesa.2020.105897
    [17]
    ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—13[S]. West Conshohocken: ASTM International, 2013.
    [18]
    章宇界, 赵鑫, 郭金海, 等. 复合材料胶接用金属喷砂工艺研究[J]. 玻璃钢/复合材料, 2019(1): 71-74.

    ZHANG Yujie, ZHAO Xin, GUO Jinhai, et al. Study on metal sandblasting process for bonding of composites[J]. Fiber Reinforced Plastics/Composites, 2019(1): 71-74(in Chinese).
    [19]
    REHAN M S B M, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161: 1-7. DOI: 10.1016/j.compstruct.2016.11.036
    [20]
    KIM B W, MAYER A H. Influence of fiber direction and mixed-mode ratio on delamination fracture toughness of carbon/epoxy laminates[J]. Composites Science and Technology, 2003, 63(5): 695-713. DOI: 10.1016/S0266-3538(02)00258-0
    [21]
    HASHEMI S, KINLOCH A J, WILLIAMS J G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites[J]. Journal of Materials Science Letters, 1989, 8: 125-129. DOI: 10.1007/BF00730701
    [22]
    ZHOU Y, XIAO Y, WU Q, et al. A multi-state progressive cohesive law for the prediction of unstable propagation and arrest of mode-I delamination cracks in composite laminates[J]. Engineering Fracture Mechanics, 2021, 248: 107684. DOI: 10.1016/j.engfracmech.2021.107684
    [23]
    ZAKARIA A Z, SHELESH-NEZHAD K, CHAKHERLOU T N, et al. Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates[J]. Engineering Fracture Mechanics, 2017, 172: 139-151. DOI: 10.1016/j.engfracmech.2017.01.004
    [24]
    KUPSKI J, DE FREITAS S T, ZAROUCHAS D, et al. Composite layup effect on the failure mechanism of single lap bonded joints[J]. Composite Structures, 2019, 217: 14-26. DOI: 10.1016/j.compstruct.2019.02.093
    [25]
    肖鹏程, 邓健, 王增贤, 等. 超高分子量聚乙烯纤维增强复合材料层合板层间断裂韧性[J]. 复合材料学报, 2023, 40(11): 6087-6097.

    XIAO Pengcheng, DENG Jian, WANG Zengxian, et al. Interlaminar fracture toughness of ultra-high molecular weight polyethylene fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6087-6097(in Chinese).
    [26]
    吴庆欣, 肖毅, 薛元德. 双悬臂梁试件裂纹动态扩展的准静态数值分析[J]. 复合材料学报, 2019, 36(5): 1179-1188.

    WU Qingxin, XIAO Yi, XUE Yuande. A quasi-static numerical analysis of crack dynamic propagation in double cantilever beam specimens[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1179-1188(in Chinese).
    [27]
    TAN W, MARTINEZ-PANEDA E. Phase field fracture predictions of microscopic bridging behaviour of composite materials[J]. Composite Structures, 2022, 286: 115242. DOI: 10.1016/j.compstruct.2022.115242
    [28]
    SEBAEY T A, BLANCO N, LOPES C S, et al. Numerical investigation to prevent crack jumping in double cantilever beam tests of multidirectional composite laminates[J]. Composites Science and Technology, 2011, 71(13): 1587-1592. DOI: 10.1016/j.compscitech.2011.07.002
    [29]
    SUN C, ZHENG S. Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens[J]. Composites Science and Technology, 1996, 56(4): 451-459. DOI: 10.1016/0266-3538(96)00001-2
    [30]
    DE MORAIS A B, DE MOURA M F, MARQUES A T, et al. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites[J]. Composites Science and Technology, 2002, 62(5): 679-686. DOI: 10.1016/S0266-3538(01)00223-8
    [31]
    ALIF N, CARLSSON L A, BOOGH L. The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites[J]. Composites Part B: Engineering, 1998, 29(5): 603-611. DOI: 10.1016/S1359-8368(98)00014-6
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (162) PDF downloads (22) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return