, A A. A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons[J]. Acta Materiae Compositae Sinica.
Citation:    , A A. A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons[J]. Acta Materiae Compositae Sinica.

A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons

More Information
  • The studies on concrete structures prestressed with external FRP tendons are reviewed in the aspects of FRP tendon, key technology and structural component, in this review. Firstly, the tensile properties and long-term behaviors of FRP tendon are introduced. The design-oriented values of creep-rupture stress, relaxation rate and the limits of maximum fatigue stress and fatigue stress range are provided. Secondly, the advantages and deficiencies of three main types of anchor for FRP tendon, and the methods of reducing the stress concentration on FRP tendon at anchor are elaborated. The newly-developed composite-wedge anchor is emphasized, which possesses an anchor efficiency coefficient exceeding 90%. Meanwhile, the deviation radius is recommended to be larger than 200 times of the radius the cross-section of FRP tendons, and the deviation angle of FRP tendons should not exceed 5°, based on the experimental results on the mechanical properties of deviated FRP tendons. Thirdly, the experimental results of concrete beams prestressed with external FRP tendons are reviewed, including monotonic loading, sustained loading and cyclic loading. The design methodologies in the codes at home and overseas are introduced. The accuracies of the calculating methods in the codes are evaluated using the experimental data of forty-two beams, and the methods in the Chinese code GB 50608—2020 are validated to be accurate in the design calculation for concrete structures prestressed with external FRP tendons. This paper is expected to actively promote the popularization and application of concrete structures prestressed with external FRP tendons.
  • 孙宝俊, 周国华. 体外预应力结构技术及应用综述[J]. 东南大学学报: 自然科学版, 2001, 31(1):109-113.

    SUN B, ZHOU G. A survey on Structural techniques and applications of external prestressing[J]. Journal of Southeast University (Natural Science Edition),2001,31(1):109-113(in Chinese).
    ACI Committee 440. ACI 440.4 R-04 Prestressing Concrete Structure with FRP Tendons[S]. USA: American Concrete Institute, 2004.
    GRACE N F, NAVARRE F C, NACEY R B, et al. Design-construction of bridge street bridge-first CFRP bridge in the United States[J]. PCI Journal,2002,47(5):20-35. DOI: 10.15554/pcij.09012002.20.35
    KARBHARI V M. Use of composite materials in civil infrastructure in Japan[R]. California, USA: University of California, 1998.
    鲁平印, 向星赟. 荷兰Dintelhaven桥的设计建造特色[J]. 中外公路, 2008, 28(9):245-248.

    LU P, XIANG X. Design and construction features of Dintelhaven Bridge in Netherland[J]. Journal of China & Foreign Highway,2008,28(9):245-248(in Chinese).
    史健喆. 海洋环境下BFRP筋体外预应力加固钢筋混凝土梁长期性能研究[D]. 南京: 东南大学, 2019.

    SHI J. Long-term behaviors of RC beam prestressed with external BFRP tendons in marine environment[D]. Nanjing: Southeast University, 2019 (in Chinese).
    WANG X, SHI J, WU G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique[J]. Engineering Structures,2015,101:34-44. DOI: 10.1016/j.engstruct.2015.06.052
    吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2016: 116-117.

    WU Z, WANG X, WU G. FRP Reinforced engineering structural systems[M]. Beijing: Science Press, 2016: 116-117 (in Chinese).
    YAMAGUCHI T, NISHIMURA T, UOMOTO T. Creep rupture of FRP rods made of aramid, carbon and glass fibers[J]. Structural Engineering & Construction: Tradition, Present and Future,1998,2:1331-1336.
    ANDO N, MATSUKAWA H, KAWAMURA M, et al. Experimental studies on the long-term tensile properties of FRP tendons[C]//Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Sapporo: Japan Concrete Institute, 1997, 2: 203-210.
    Tokyo Rope. CFCC, Carbon Fiber Composite Cable [EB/OL] Tokyo: Tokyo Rope Manufacturing Co. Ltd, 2000 [2021-03-15].
    SHI J, WANG X, WU Z, et al. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon[J]. Construction and Building Materials,2015,94:750-757. DOI: 10.1016/j.conbuildmat.2015.07.118
    BANIBAYAT P, PATNAIK A. Creep rupture performance of basalt fiber-reinforced polymer bars[J]. Journal of Aerospace Engineering,2013,28(3):04014074.
    ACI Committee 440. ACI 440.1R-15 Guide for the Design and Construction of Concrete Reinforced with FRP Bars[S]. USA: American Concrete Institute, 2015.
    GUNNARSSON A. Bearing capacity, relaxation and finite element simulation for prestressed concrete beams reinforced with BFRP tendons[D]. Iceland: Reykjavik University, 2013.
    THORHALLSSON E, JONSSON B S. Test of Prestressed concrete beams with BFRP tendons[C]//Workshop Structural Engineering and Composites Laboratory. Reykjavik: Reykjavik University, 2012.
    SHI J, WANG X, HUANG H, et al. Relaxation behavior of prestressing basalt fiber-reinforced polymer tendons considering anchorage slippage[J]. Journal of Composite Materials,2016,51(9):1275-1284.
    ZOU P X W. Long-Term Properties and Transfer Length of Fiber-Reinforced Polymers[J]. Journal of Composites for Construction,2003,7(1):10-19. DOI: 10.1061/(ASCE)1090-0268(2003)7:1(10)
    周祝林, 杨云娣. 纤维增强塑料蠕变机理的初步探讨[J]. 玻璃钢/复合材料, 1985, 4:31-35.

    ZHOU Z, YANG Y. A preliminary discussion on creep mechanism of fiber-reinforced plastic (FRP)[J]. Fiber Reinforced Plastics/Composites,1985,4:31-35(in Chinese).
    WANG X, SHI J, WU Z, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications[J]. Materials & Design,2016,89:1270-1277.
    WU Z, WANG X, IWASHITA K, et al. Tensile fatigue behaviour of FRP and hybrid FRP sheets[J]. Composites: Part B Engineering,2010,41(5):396-402. DOI: 10.1016/j.compositesb.2010.02.001
    WANG X, SHI J, WU Z, et al. Fatigue behavior of basalt fiber-reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2015,20(3):04015079.
    SAADATMANESH H, TANNOUS F E. Relaxation, creep, and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal,1999,96 (2):143-153.
    SAADATMANESH H, TANNOUS F E. Long-term behavior of aramid fiber reinforced plastic (AFRP) tendons[J]. ACI Materials Journal,1999,96(3):297-305.
    EL REFAI A. Durability and fatigue of basalt fiber-reinforced polymer bars gripped with steel wedge anchors[J]. Journal of Composites for Construction,2013,17(6):04013006. DOI: 10.1061/(ASCE)CC.1943-5614.0000417
    曾凡星. FRP拉索疲劳特性及其长寿命RC斜拉桥研究[D]. 南京: 东南大学, 2012.

    ZENG F. Study on fatigue properties of FRP cables and longevity of RC cable-stayed bridge[D]. Nanjing: Southeast University, 2012 (in Chinese).
    ADIMI M R, RAHMAN A H, BENMOKRANE B. New Method for Testing Fiber-Reinforced Polymer Rods under Fatigue[J]. Journal of Composites for Construction,2000,4(4):206-213. DOI: 10.1061/(ASCE)1090-0268(2000)4:4(206)
    ELREFAI A, WEST JS, SOUDKI K. Performance of CFRP tendon-anchor assembly under fatigue loading[J]. Composite Structures, 80(3): 352-360.
    SONG ST, ZANG H, DUAN, N, et al. Experimental Research and Analysis on Fatigue Life of Carbon Fiber Reinforced Polymer (CFRP) Tendons[J]. Materials,2019,12(20):786-795.
    XIE G H, TANG Y S, WANG C M, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites: Part B,2018,150:47-59. DOI: 10.1016/j.compositesb.2018.05.047
    诸葛萍, 丁勇, 侯苏伟, 等. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 工学版, 2014, 48(10):1822-1827, 1842.

    ZHUGE P, DING Y, HOU S, et al. Optimization design and fatigue test of new CFRP tendon anchor assembly[J]. Journal of Zhejiang University (Engineering Science),2014,48(10):1822-1827, 1842(in Chinese).
    张新越, 欧进萍. CFRP筋的疲劳性能[J]. 材料研究学报, 2006, 20(6):565-570. DOI: 10.3321/j.issn:1005-3093.2006.06.002

    ZHANG X, OU J. Experimental study on fatigue behavior of CFRP bars[J]. Chinese Journal of Materials Research,2006,20(6):565-570(in Chinese). DOI: 10.3321/j.issn:1005-3093.2006.06.002
    ODAGIRI T, MATSUMOTO K, NAKAI H. Fatigue and relaxation characteristics of continuous aramid fiber reinforced plastic rods[C]//Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Sapporo: Japan Concrete Institute, 1997, 2: 14-16.
    ATUTIS E, VALIVONIS J, ATUTIS M. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers under cyclic load[J]. Composite Structures,2018,Special Issue:‏389-396.
    SCHMIDT J W, BENNITZ A, TÄLJSTEN B, et al. Mechanical anchorage of FRP tendons – A literature review[J]. Construction & Building Materials,2012,32:110-121.
    SCHMIDT JW, BENNITZ A, TÄLJSTEN B, et al. Development of mechanical anchor for CFRP tendons using integrated sleeve[J]. Journal of Composites for Construction. 2010, 14(4): 397–405.
    TERRASI GP, AFFOLTER C, BARBEZAT M. Numerical optimization of a compact and reusable pretensioning anchorage system for CFRP tendons[J]. Journal of Composites for Construction,2011,15(2):126-135. DOI: 10.1061/(ASCE)CC.1943-5614.0000080
    张磊. 基于同源材料的FRP筋夹片式锚具优化设计及性能研究[D]. 南京: 东南大学, 2019.

    ZHANG L. Study on optimization design for a wedge anchor of FRP tendon based on homologous materials and its performance[D]. Nanjing: Southeast University, 2019 (in Chinese).
    ZHU H, DONG Z Q, WU G, et al. Experimental Evaluation of Bent FRP Tendons for Strengthening by External Prestressing[J]. Journal of Composites for Construction,2017,21(5):04017032. DOI: 10.1061/(ASCE)CC.1943-5614.0000811
    SANTOH N. CFCC: Carbon Fiber Composite Cable[M]// Nanni A. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures. Amsterdam: Elsevier Science Publishers B. V., 1993: 223-248.
    LOU T, LOPES S M R, LOPES A V. Numerical analysis of behaviour of concrete beams with external FRP tendons[J]. Construction and Building Materials,2012,35:970-978. DOI: 10.1016/j.conbuildmat.2012.04.055
    GHALLAB A. Calculating ultimate tendon stress in externally prestressed continuous concrete beams using simplified formulas[J]. Engineering Structures,2013,46:417-430. DOI: 10.1016/j.engstruct.2012.07.018
    GHALLAB A, BEEBY A W. Factors affecting the external prestressing stress in externally strengthened prestressed concrete beams[J]. Cement & Concrete Composites,2005,27(9):945-957.
    WANG X, SHI J, WU G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique[J]. Engineering Structures,2015,101:34-44. DOI: 10.1016/j.engstruct.2015.06.052
    史健喆; 汪昕; 吴智深. 采用同源材料夹片锚具的玄武岩纤维复材筋体外预应力加固混凝土梁受弯性能研究[J]. 工业建筑, 2019, 9:156-160.

    SHI J, WANG X, WU Z. Flexural behavior of RC beams prestressed with external BFRP tendons using a composite-wedge anchorage[J]. Industrial Construction,2019,9:156-160(in Chinese).
    曹国辉, 方志. 体外CFRP筋预应力混凝土箱梁长期受力性能试验研究[J]. 土木工程学报, 2007, 40(2):18-24. DOI: 10.3321/j.issn:1000-131X.2007.02.004

    CAO G, FANG Z. Experimental study on the long-term behavior of concrete box girders prestressed with external CFRP tendons[J]. China Civil Engineering Journal,2007,40(2):18-24(in Chinese). DOI: 10.3321/j.issn:1000-131X.2007.02.004
    高宏. 体外预应力FRP筋加固混凝土梁的疲劳性能研究[D]. 南京: 东南大学, 2006.

    GAO H. Research of the fatigue performance of RC beams externally prestressed with FRP tendons[D]. Nanjing: Southeast University, 2006 (in Chinese).
    BRAIMAH A, GREEN M F, CAMPBELL T I. Fatigue behaviour of concrete beams post-tensioned with unbonded carbon fibre reinforced polymer tendons[J]. Canadian Journal of Civil Engineering,2006,33(9):1140-1155. DOI: 10.1139/l06-063
    GRACE N F. Response of continuous CFRP prestressed concrete bridges under static and repeated loadings[J]. PCI Journal,2000,45(6):84-102. DOI: 10.15554/pcij.11012000.84.102
    Elrefai A, West J, Soudki K. Fatigue of reinforced concrete beams strengthened with externally post-tensioned CFRP tendons[J]. Construction and Building Materials,2012,29:246-256. DOI: 10.1016/j.conbuildmat.2011.10.014
    朱虹. 新型预应力FRP筋预应力混凝土结构的研究[D]. 南京: 东南大学, 2004.

    ZHU H. Study on concrete structure prestressed with FRP tendons[D]. Nanjing: Southeast University, 2004 (in Chinese).
    GRACE N F, ENOMOTO T, YAGI K. Behavior of CFCC and CFRP Leadline prestressing systems in bridge construction[J]. PCI Journal,2002,47(3):90-103. DOI: 10.15554/pcij.05012002.90.103
    程君. 体外预应力CFRP筋混凝土连续梁疲劳性能研究[D]. 南京: 东南大学, 2017.

    CHENG J. Study on the fatigue behavior of reinforced concrete continuous beams prestressed with external CFRP tendons[D]. Nanjing: Southeast University, 2017 (in Chinese).
    中华人民共和国住房和城乡建设部. GB 50608—2020 纤维增强复合材料工程应用技术标准[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). GB 50608—2020 Technical standard for fiber reinforced polymer (FRP) in construction[S]. Beijing: China Planning Press, 2020 (in Chinese).
    YOUAKIM S A, KARBHARI V M. An approach to determine long-term behavior of concrete members prestressed with FRP tendons[J]. Construction and Building Materials,2007,21(5):1052-1060. DOI: 10.1016/j.conbuildmat.2006.02.006
    The International Federation for Structural Concrete (fib). fib MC2010 fib model code for concrete structures[S]. Hoboken, USA: Ernst & Sohn, 2010.
    BSI Technical Committee B/525. BS 8110-1-1997 Structural use of concrete—Part 1: Code of practice for design and construction[S]. Britain: British Standard Institute, 1997.
    PENG F, XUE W, TAN Y. Design approach for flexural capacity of prestressed concrete beams with external tendons[J]. Journal of Structural Engineering,2018,144(12):04018215. DOI: 10.1061/(ASCE)ST.1943-541X.0002208
    DOLAN C W. Design recommendations for concrete structures prestressed with FRP tendons: FHWA contract, final report[R]. USA: Federal Highway Administration, 2001.
    中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2016 (in Chinese).
    DU J S, YANG D, NG P L, et al. Response of concrete beams partially prestressed with external unbonded carbon fiber-reinforced polymer tendons[J]. Advanced Materials Research,2010,150-151:344-349. DOI: 10.4028/www.scientific.net/AMR.150-151.344
    EL-REFAI A, WEST J, SOUDKI K. Strengthening of RC beams with external post-tensioned CFRP tendons. Case histories and use of FRP for prestressing applications[J]. ACI Special Publication,2007,245:123-142.
    BENNITZ A, SCHMIDT J W, NILIMAA J, et al. Reinforced concrete t-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons[J]. ACI Structural Journal,2012,109(4):521-530.
    JUNG W T, PARK J S, PARK Y H, et al. An experimental study on the flexural behavior of post-tensioned concrete beams with CFRP tendons[J]. Applied Mechanics and Materials,2013,351-352:717-721. DOI: 10.4028/www.scientific.net/AMM.351-352.717
    AU F T, SU R K, TSO K, et al. Behaviour of partially prestressed beams with external tendons[J]. Magazine of Concrete Research,2008,60(6):455-467. DOI: 10.1680/macr.2008.60.6.455
    TAN K, FAROOQ M, NG C, et al. Behavior of simple-span reinforced concrete beams locally strengthened with external tendons[J]. ACI Structural Journal,2001,98(2):174-183.
  • Cited by

    Periodical cited type(2)

    1. 颜秀花,房娟,唐兰勤. 磁性纳米ZnFe_2O_4/Ag_3PO_4复合材料的合成及光催化降解性能. 环境科学学报. 2025(01): 135-142 .
    2. 蒋莉萍,张雪乔,钟晓娟,魏于凡,肖利,郭旭晶,羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备. 化工进展. 2025(01): 538-548 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1560) PDF downloads (35) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return