DENG Erjie, LIU Yanqi, SONG Chunfang. Preparation and compression properties of negative stiffness honeycomb cell structure[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2161-2171. DOI: 10.13801/j.cnki.fhclxb.20210722.001
Citation: DENG Erjie, LIU Yanqi, SONG Chunfang. Preparation and compression properties of negative stiffness honeycomb cell structure[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2161-2171. DOI: 10.13801/j.cnki.fhclxb.20210722.001

Preparation and compression properties of negative stiffness honeycomb cell structure

More Information
  • Received Date: April 19, 2021
  • Revised Date: June 19, 2021
  • Accepted Date: July 13, 2021
  • Available Online: July 22, 2021
  • Negative stiffness honeycomb cell structures were fabricated by fused filament fabrication (FFF) based on chopped carbon fiber reinforced nylon composites (MarkForged Onyx). In order to analyze the printing properties and compression properties, compression tests for negative stiffness honeycomb cell structure specimens were carried out. The influence mechanism of three process parameters, including building directions, fill patterns and wall layers, on the printing properties and compression properties of the structure was analyzed. The results show that the combination of flat building directions, hexagonal fill pattern and one wall layer can effectively reduce the printing time and cost of the structure. The compression properties of the flat building directions are superior to that of the on-edge and up-right. Compared with quadrilateral and hexagonal fill pattern, triangular fill pattern improves the energy absorption capacity of the structure significantly. Two wall layers have a great impact on the compressive strength of the structure. Cell structures show pronounced negative stiffness behavior during the loading process with percent energy absorbed up to 70%, and force threshold of about 185 N. Through the cycle tests, there is only 6% of the compression deformation, realizing the recoverable energy absorption of negative stiffness honeycomb core structures based on Markforged Onyx chopped carbon fiber reinforced nylon composites.
  • [1]
    VANAEI H, SHIRINBAYAN M, DELIGANT M, et al. Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication[J]. Polymer Engineering and Science,2020,60(8):1822-1831. DOI: 10.1002/pen.25419
    [2]
    陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):167-191. DOI: 10.7527/S1000-6893.2020.23844

    CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of art and perspective[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):167-191(in Chinese). DOI: 10.7527/S1000-6893.2020.23844
    [3]
    JUSTO J, TAVARA L, GARCIA-GUZMAN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. DOI: 10.1016/j.compstruct.2017.11.052
    [4]
    LIU Y, ZHUANG W. Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144:1-11.
    [5]
    LIANG J S, JIANG H, ZHANG J S, et al. Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19(1):240-250. DOI: 10.1016/j.acme.2018.11.001
    [6]
    TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. DOI: 10.1016/j.compscitech.2014.10.009
    [7]
    ZHONG W H, LI F, ZHANG Z G, et al. Short fiber reinforced composites for fused deposition modeling[J]. Materials Science and Engineering: A,2001,301:125-130. DOI: 10.1016/S0921-5093(00)01810-4
    [8]
    NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering,2015,80:369-378. DOI: 10.1016/j.compositesb.2015.06.013
    [9]
    FERREIRA R T L, AMATTE I C, DUTRA T A, et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers[J]. Composites Part B: Engineering,2017,124:88-100. DOI: 10.1016/j.compositesb.2017.05.013
    [10]
    CAMINERO M A, CHACON J M, GARCIA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposi-tion modelling[J]. Composites Part B: Engineering,2018,148:93-103. DOI: 10.1016/j.compositesb.2018.04.054
    [11]
    MOSLEH N, REZADOUST A M, DARIUSHI S. Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing[J]. Materials and Manufacturing Processes,2021,36(4):409-418. DOI: 10.1080/10426914.2020.1843664
    [12]
    TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. DOI: 10.1016/j.compositesa.2016.05.032
    [13]
    DAI F H, LI H, DU S Y. A multi-stable lattice structure and its snap-through behavior among multiple states[J]. Composite Structures,2013,97:56-63. DOI: 10.1016/j.compstruct.2012.10.016
    [14]
    HA C S, LAKES R S, PLESHA M E. Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior[J]. Materials & Design,2018,141:426-437.
    [15]
    RESTREPO D, MANKAME N D, ZAVATTIERI P D. Phase transforming cellular materials[J]. Extreme Mechanics Letters,2015,4:52-60. DOI: 10.1016/j.eml.2015.08.001
    [16]
    TAN X J, CHEN S, WANG B, et al. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy[J]. Extreme Mechanics Letters,2019,28:8-21. DOI: 10.1016/j.eml.2019.02.002
    [17]
    QIU J, LANG J H, SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems,2004,13(2):137-146. DOI: 10.1109/JMEMS.2004.825308
    [18]
    CORREA D M, KLATT T, CORTES S, et al. Negative stiffness honeycombs for recoverable shock isolation[J]. Rapid Prototyping Journal,2015,21(2):193-200. DOI: 10.1108/RPJ-12-2014-0182
    [19]
    任晨辉, 杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击, 2018, 37(20):81-87.

    REN C H, YANG D Q. Characteristics of a novel multilayer negative stiffness shock isolationsystem for a marine structure[J]. Journal of Vibration and Shock,2018,37(20):81-87(in Chinese).
    [20]
    张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015, 34(10):40-45.

    ZHANG X W, YANG D Q. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock,2015,34(10):40-45(in Chinese).
    [21]
    TAN X J, WANG B, CHEN S, et al. A novel cylindrical nega-tive stiffness structure for shock isolation[J]. Composite Structures,2019,214:397-405. DOI: 10.1016/j.compstruct.2019.02.030
    [22]
    WANG B, TAN X J, ZHU S W, et al. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization[J]. Composite Structures,2019,227:1-12.
    [23]
    CHEN S, WANG B, ZHU S W, et al. A novel composite nega-tive stiffness structure for recoverable trapping energy[J]. Composites Part A-Applied Science and Manufacturing,2020,129:1-11.
    [24]
    GORDELIER T J, THIES P R, TURNER L, et al. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review[J]. Rapid Prototyping Journal,2019,25(6):953-971. DOI: 10.1108/RPJ-07-2018-0183
    [25]
    丁春香, 潘明珠, 杨舒心, 等. 基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为[J]. 复合材料学报, 2020, 37(9):2173-2182.

    DING Chunxiang, PAN Mingzhu, YANG Shuxin, et al. Interfacial mechanical behavior of wood fiber/high density polyethylene compositesbased on digital image correlation[J]. Acta Materiae Compositae Sinica,2020,37(9):2173-2182(in Chinese).
    [26]
    ASTM. Standard test method for tensile properties for plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
    [27]
    TIAN X, LIU T, WANG Q, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production,2017,142:1609-1618. DOI: 10.1016/j.jclepro.2016.11.139
    [28]
    邢开, 徐海兵, 颜春, 等. 碳纤维增强高性能热塑性复合材料界面改性的研究进展[J]. 玻璃钢/复合材料, 2019(5):110-115.

    XING Kai, XU Haibing, YAN Chun, et al. Research progress of interface modification of carbon fiber reinforced high performance thermoplastic composites[J]. Fiber Reinforced Plastics/Composites,2019(5):110-115(in Chinese).
    [29]
    XU C, CHENG K, LIU Y, et al. Effect of processing parame-ters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling[J]. Polymer Engineering and Science,2021,61(2):465-476. DOI: 10.1002/pen.25590
    [30]
    HUANG B, MENG S, HE H, et al. Study of processing parameters in fused deposition modeling based on mechanical properties of acrylonitrile-butadiene-styrene filament[J]. Polymer Engineering and Science,2019,59(1):120-128. DOI: 10.1002/pen.24875
    [31]
    冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).
    [32]
    ASTM. Standard test method for compressive properties of rigid plastics: ASTM D695-02a[S]. West Conshohocken: ASTM International, 2003.
  • Related Articles

    [1]SUN Yan, MA Xiangdong, CHEN Machao, XIE Xiaoyang, HE Jiaojie, LI Xiaoling, ZHAO Xiaohong, YANG Liwei. Research progress of positively charged composite nanofiltration membrane for lithium extraction from high magnesium/lithium ratio salt lakes[J]. Acta Materiae Compositae Sinica.
    [2]WANG Lei, WANG Lei. Preparation of polyvinyl chloride lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123. DOI: 10.13801/j.cnki.fhclxb.20221124.002
    [3]GAO Yu'nan, ZHOU Litao, WANG Jing, RU Yafang, SUN Meiqiao, FU Jinxiang. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 701-707. DOI: 10.13801/j.cnki.fhclxb.20180529.003
    [4]WANG Na, LUAN Honghe, ZHANG Jing, FANG Qinghong. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 963-969. DOI: 10.13801/j.cnki.fhclxb.20160801.001
    [5]YANG Lili, LI Chuanguo, WANG Hong, HU Tingting, ZHANG Wenjie. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecular sieve[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2682-2687. DOI: 10.13801/j.cnki.fhclxb.20160220.001
    [6]WANG Shaohui, XU Man, LUO Pan, MU Qiulin, XIE Darong, LI Yangping. Surface modification of different coupling agents on mesoporous molecular sieve MCM-41 and effects on properties of MCM-41/epoxy[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 249-258. DOI: 10.13801/j.cnki.fhclxb.20150518.006
    [7]GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 152-157.
    [8]LU Chang, HUANG Xinhui, HE Yuxin, ZHANG Yuqing. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites[J]. Acta Materiae Compositae Sinica, 2012, (2): 65-72.
    [9]YU Jie, CHEN Jingchao, HONG Zhenjun, FENG Jing. Molecular dynamic simulations on the process of Ag Al2O3 powder[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 150-155.
    [10]MO Zunli, GUO Ruibin, CHEN Hong, SUN Yaling, LI Hejun. Molecular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62.

Catalog

    Article Metrics

    Article views (1479) PDF downloads (128) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return