Citation: | DENG Erjie, LIU Yanqi, SONG Chunfang. Preparation and compression properties of negative stiffness honeycomb cell structure[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2161-2171. DOI: 10.13801/j.cnki.fhclxb.20210722.001 |
[1] |
VANAEI H, SHIRINBAYAN M, DELIGANT M, et al. Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication[J]. Polymer Engineering and Science,2020,60(8):1822-1831. DOI: 10.1002/pen.25419
|
[2] |
陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):167-191. DOI: 10.7527/S1000-6893.2020.23844
CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of art and perspective[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):167-191(in Chinese). DOI: 10.7527/S1000-6893.2020.23844
|
[3] |
JUSTO J, TAVARA L, GARCIA-GUZMAN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures,2018,185:537-548. DOI: 10.1016/j.compstruct.2017.11.052
|
[4] |
LIU Y, ZHUANG W. Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144:1-11.
|
[5] |
LIANG J S, JIANG H, ZHANG J S, et al. Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19(1):240-250. DOI: 10.1016/j.acme.2018.11.001
|
[6] |
TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. DOI: 10.1016/j.compscitech.2014.10.009
|
[7] |
ZHONG W H, LI F, ZHANG Z G, et al. Short fiber reinforced composites for fused deposition modeling[J]. Materials Science and Engineering: A,2001,301:125-130. DOI: 10.1016/S0921-5093(00)01810-4
|
[8] |
NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B: Engineering,2015,80:369-378. DOI: 10.1016/j.compositesb.2015.06.013
|
[9] |
FERREIRA R T L, AMATTE I C, DUTRA T A, et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers[J]. Composites Part B: Engineering,2017,124:88-100. DOI: 10.1016/j.compositesb.2017.05.013
|
[10] |
CAMINERO M A, CHACON J M, GARCIA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposi-tion modelling[J]. Composites Part B: Engineering,2018,148:93-103. DOI: 10.1016/j.compositesb.2018.04.054
|
[11] |
MOSLEH N, REZADOUST A M, DARIUSHI S. Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing[J]. Materials and Manufacturing Processes,2021,36(4):409-418. DOI: 10.1080/10426914.2020.1843664
|
[12] |
TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. DOI: 10.1016/j.compositesa.2016.05.032
|
[13] |
DAI F H, LI H, DU S Y. A multi-stable lattice structure and its snap-through behavior among multiple states[J]. Composite Structures,2013,97:56-63. DOI: 10.1016/j.compstruct.2012.10.016
|
[14] |
HA C S, LAKES R S, PLESHA M E. Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior[J]. Materials & Design,2018,141:426-437.
|
[15] |
RESTREPO D, MANKAME N D, ZAVATTIERI P D. Phase transforming cellular materials[J]. Extreme Mechanics Letters,2015,4:52-60. DOI: 10.1016/j.eml.2015.08.001
|
[16] |
TAN X J, CHEN S, WANG B, et al. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy[J]. Extreme Mechanics Letters,2019,28:8-21. DOI: 10.1016/j.eml.2019.02.002
|
[17] |
QIU J, LANG J H, SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems,2004,13(2):137-146. DOI: 10.1109/JMEMS.2004.825308
|
[18] |
CORREA D M, KLATT T, CORTES S, et al. Negative stiffness honeycombs for recoverable shock isolation[J]. Rapid Prototyping Journal,2015,21(2):193-200. DOI: 10.1108/RPJ-12-2014-0182
|
[19] |
任晨辉, 杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击, 2018, 37(20):81-87.
REN C H, YANG D Q. Characteristics of a novel multilayer negative stiffness shock isolationsystem for a marine structure[J]. Journal of Vibration and Shock,2018,37(20):81-87(in Chinese).
|
[20] |
张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015, 34(10):40-45.
ZHANG X W, YANG D Q. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock,2015,34(10):40-45(in Chinese).
|
[21] |
TAN X J, WANG B, CHEN S, et al. A novel cylindrical nega-tive stiffness structure for shock isolation[J]. Composite Structures,2019,214:397-405. DOI: 10.1016/j.compstruct.2019.02.030
|
[22] |
WANG B, TAN X J, ZHU S W, et al. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization[J]. Composite Structures,2019,227:1-12.
|
[23] |
CHEN S, WANG B, ZHU S W, et al. A novel composite nega-tive stiffness structure for recoverable trapping energy[J]. Composites Part A-Applied Science and Manufacturing,2020,129:1-11.
|
[24] |
GORDELIER T J, THIES P R, TURNER L, et al. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review[J]. Rapid Prototyping Journal,2019,25(6):953-971. DOI: 10.1108/RPJ-07-2018-0183
|
[25] |
丁春香, 潘明珠, 杨舒心, 等. 基于数字图像相关技术的木纤维/高密度聚乙烯复合材料界面力学行为[J]. 复合材料学报, 2020, 37(9):2173-2182.
DING Chunxiang, PAN Mingzhu, YANG Shuxin, et al. Interfacial mechanical behavior of wood fiber/high density polyethylene compositesbased on digital image correlation[J]. Acta Materiae Compositae Sinica,2020,37(9):2173-2182(in Chinese).
|
[26] |
ASTM. Standard test method for tensile properties for plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
|
[27] |
TIAN X, LIU T, WANG Q, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites[J]. Journal of Cleaner Production,2017,142:1609-1618. DOI: 10.1016/j.jclepro.2016.11.139
|
[28] |
邢开, 徐海兵, 颜春, 等. 碳纤维增强高性能热塑性复合材料界面改性的研究进展[J]. 玻璃钢/复合材料, 2019(5):110-115.
XING Kai, XU Haibing, YAN Chun, et al. Research progress of interface modification of carbon fiber reinforced high performance thermoplastic composites[J]. Fiber Reinforced Plastics/Composites,2019(5):110-115(in Chinese).
|
[29] |
XU C, CHENG K, LIU Y, et al. Effect of processing parame-ters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling[J]. Polymer Engineering and Science,2021,61(2):465-476. DOI: 10.1002/pen.25590
|
[30] |
HUANG B, MENG S, HE H, et al. Study of processing parameters in fused deposition modeling based on mechanical properties of acrylonitrile-butadiene-styrene filament[J]. Polymer Engineering and Science,2019,59(1):120-128. DOI: 10.1002/pen.24875
|
[31] |
冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.
FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).
|
[32] |
ASTM. Standard test method for compressive properties of rigid plastics: ASTM D695-02a[S]. West Conshohocken: ASTM International, 2003.
|
[1] | SUN Yan, MA Xiangdong, CHEN Machao, XIE Xiaoyang, HE Jiaojie, LI Xiaoling, ZHAO Xiaohong, YANG Liwei. Research progress of positively charged composite nanofiltration membrane for lithium extraction from high magnesium/lithium ratio salt lakes[J]. Acta Materiae Compositae Sinica. |
[2] | WANG Lei, WANG Lei. Preparation of polyvinyl chloride lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123. DOI: 10.13801/j.cnki.fhclxb.20221124.002 |
[3] | GAO Yu'nan, ZHOU Litao, WANG Jing, RU Yafang, SUN Meiqiao, FU Jinxiang. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 701-707. DOI: 10.13801/j.cnki.fhclxb.20180529.003 |
[4] | WANG Na, LUAN Honghe, ZHANG Jing, FANG Qinghong. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 963-969. DOI: 10.13801/j.cnki.fhclxb.20160801.001 |
[5] | YANG Lili, LI Chuanguo, WANG Hong, HU Tingting, ZHANG Wenjie. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecular sieve[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2682-2687. DOI: 10.13801/j.cnki.fhclxb.20160220.001 |
[6] | WANG Shaohui, XU Man, LUO Pan, MU Qiulin, XIE Darong, LI Yangping. Surface modification of different coupling agents on mesoporous molecular sieve MCM-41 and effects on properties of MCM-41/epoxy[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 249-258. DOI: 10.13801/j.cnki.fhclxb.20150518.006 |
[7] | GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 152-157. |
[8] | LU Chang, HUANG Xinhui, HE Yuxin, ZHANG Yuqing. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites[J]. Acta Materiae Compositae Sinica, 2012, (2): 65-72. |
[9] | YU Jie, CHEN Jingchao, HONG Zhenjun, FENG Jing. Molecular dynamic simulations on the process of Ag Al2O3 powder[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 150-155. |
[10] | MO Zunli, GUO Ruibin, CHEN Hong, SUN Yaling, LI Hejun. Molecular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62. |