Citation: | HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1638-1647. DOI: 10.13801/j.cnki.fhclxb.20210611.001 |
[1] |
WANG J, KAPLAN J A, COLSON Y L, et al. Stretch-induced drug delivery from superhydrophobic polymer composites: Use of crack propagati on failure modes for controlling release rates[J]. Angewandte Chemie International Edition,2016,55:2796-2800. DOI: 10.1002/anie.201511052
|
[2] |
ZHOU J C, FRANK M A, YANG Y Y, et al. A novel local drug delivery system: superhydrophobic tita-nium oxide nano-tube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. DOI: 10.1016/j.msec.2017.08.066
|
[3] |
胡立琼, 雷鸣, 邱亚群, 等. 仿生超疏水表面在建筑和生物医药领域的研究进展[J]. 广东化工, 2016, 43(17):100-102. DOI: 10.3969/j.issn.1007-1865.2016.17.045
HU L Q, LEI M, QIU Y Q, et al. Application of biomimetic super-hydrophobic surface in construction and biological medicine field—A review[J]. Guangdong Journal of Che-mical Engineering,2016,43(17):100-102(in Chinese). DOI: 10.3969/j.issn.1007-1865.2016.17.045
|
[4] |
MALEKIDELARESTAQI M, MANSOURI A, CHINI S F. Electrokinetic energy conversion in a finite length superhydrophobic microchannel[J]. Chemical Physics Letters,2018,703:72-79. DOI: 10.1016/j.cplett.2018.05.007
|
[5] |
XUE X P, WANG S Q, ZHAN G C, et al. Fabrication of Ni Co coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection[J]. Surface and Coatings Technology,2019,363:352-361. DOI: 10.1016/j.surfcoat.2019.02.056
|
[6] |
MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano,2010,4:7699-7707. DOI: 10.1021/nn102557p
|
[7] |
莫春燕, 郑燕升, 王发龙, 等. TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J]. 中国表面工程, 2015, 28(2):132-137. DOI: 10.11933/j.issn.1007-9289.2015.02.016
MO C Y, ZHENG Y S, WANG F L, et al. Preparation and property of TiO2/PMHS superhydrophobic and anticorrosive coating[J]. New Chemical Materials,2015,28(2):132-137(in Chinese). DOI: 10.11933/j.issn.1007-9289.2015.02.016
|
[8] |
GALOPIN E, PIRET G, SZUNERITS S, et al. Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires[J]. Langmuir,2010,26(5):3479-3484. DOI: 10.1021/la9030377
|
[9] |
周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007(8):164-168.
ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding and its applications[J]. Acta Physico-Chimica Sinica,2007(8):164-168(in Chinese).
|
[10] |
PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Material,2018,17(4):355-360. DOI: 10.1038/s41563-018-0044-2
|
[11] |
CHEN F F, YANG Z Y, ZHU Y J, et al. Low-cost and scaled-up production of fluorine-free, sub-strate-independent, large-area superhydrophobic coatings based on hydroxyapatite nanowire bundles[J]. Chemistry-A European Journal,2018,24:416-424. DOI: 10.1002/chem.201703894
|
[12] |
LEE W K, JUNG W B, RHEE D, et al. Monolithic polymer nanoridges with programmable wetting transitions[J]. Advanced Materials,2018,30(32):1706657.
|
[13] |
ZHU C, GAO Y, HUANG Y, et al. Controlling states of water droplets on nanostructured surfaces by design[J]. Nanoscale,2017,9(46):18240-18245. DOI: 10.1039/C7NR06896D
|
[14] |
VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology,2019,375:100-111. DOI: 10.1016/j.surfcoat.2019.07.005
|
[15] |
马宁, 程丹, 张景强, 等. 激光刻蚀法制备GH4169超疏水表面及性能研究[J]. 中国铸造装备与技术, 2020, 55(2):40-45. DOI: 10.3969/j.issn.1006-9658.2020.02.010
MA N, CHENG D, ZHANG J Q, et al. Preparation and properties of GH4169 super-hydrophobic surface by laser etching[J]. China Foundry Machinery & Technology,2020,55(2):40-45(in Chinese). DOI: 10.3969/j.issn.1006-9658.2020.02.010
|
[16] |
PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328. DOI: 10.1016/j.jcis.2012.12.036
|
[17] |
孙巍, 周雨辰, 陈忠仁. 基于水滴模板法的微纳复合超疏水结构制备的研究[J]. 高分子学报, 2012(12):108-113.
SUN W, ZHOU Y C, CHEN Z R. Construction of superhydrophobic surface via secondary processing of honeycomb-patterned substrate[J]. Acta Polymerica Sinica,2012(12):108-113(in Chinese).
|
[18] |
MAGHSOUDI K, MOMEN G, JAFARI R, et al. Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding[J]. Applied Surface Science,2018,458:619-628. DOI: 10.1016/j.apsusc.2018.07.099
|
[19] |
MUNIRASUA S, BANATA F, DURRANI A A, et al. Intrinsically superhydrophobic PVDF mem-brane by phase inversion for membrane distillation[J]. Desalination,2017,417:77-86. DOI: 10.1016/j.desal.2017.05.019
|
[20] |
WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. DOI: 10.1038/s41586-020-2331-8
|
[21] |
WU J, DONG J, WANG Y, et al. Thermal oxidation ageing effects on silicone rubber sealing performance[J]. Polymer Degradation and Stability,2017,135:43-53. DOI: 10.1016/j.polymdegradstab.2016.11.017
|
[22] |
DAVYDOVA M L, SOKOLOVA M D, HALDEEVA A R, et al. Modification of sealing rubber based on nitrile butadiene rubber by thermoexpanded graphite[J]. Journal of Friction & Wear,2015,36(1):23-28.
|
[23] |
PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2020,582(7810):355-360.
|
[24] |
PENG C Y, CHEN Z Y, TIWARI M K, et al. Analysis of wear abrasion resistance of superhydrophobic acrylonitrile butadiene styrene rubber (ABS) nanocomposites[J]. Chemical Engineering Journal,2015,281:730-738. DOI: 10.1016/j.cej.2015.06.086
|
[25] |
弯艳玲, 廉中旭, 刘志刚, 等. 高速电火花线切割制备耐用型超疏水铜表面[J]. 材料科学与工程学报, 2014, 32(5):634-637, 642.
WAN Y L, LIAN Z X, LIU Z G, et al. Fabrication of robust super-hydrophobic copper surface by HS-WEDM[J]. Journal of Materials Science & Engineering,2014,32(5):634-637, 642(in Chinese).
|
[26] |
武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4):2172-2175.
WU Z F, LI S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(4):2172-2175(in Chinese).
|
1. |
赵乃君,华汶乐,陈列,黄宫淇. 激光诱导硅橡胶超疏水表面及其耐磨性研究. 材料保护. 2024(09): 45-53 .
![]() | |
2. |
何强,王晓森,宁梦遥. 硅橡胶超疏水涂层的撒粉法制备. 中国表面工程. 2023(02): 146-154+179 .
![]() | |
3. |
赵亚梅,霍梦丹,曹婷婷,丁思奇,陈丽. 提升超疏水材料力学耐久性的研究进展. 复合材料学报. 2023(04): 2004-2014 .
![]() | |
4. |
胡娟,肖楠,谭亦可,李文强,曾向宏,张爱霞,陈莉,陈敏剑,周远建. 2022年国内有机硅进展. 有机硅材料. 2023(03): 68-89 .
![]() | |
5. |
杨威,颜丙越,夏国巍,尹国华,段祺君,谢军. 纳米SiO_2改性玻璃纤维增强树脂的耐湿热老化性能. 绝缘材料. 2023(10): 50-58 .
![]() | |
6. |
费楚然,胡纯,文艳辉,李戎,宁洪胜,张文晶,温得浩,李建喜. 苯基硅橡胶高剂量辐射老化性能研究. 合成材料老化与应用. 2023(05): 7-10 .
![]() | |
7. |
郭乐扬,阮海妮,李文戈,高原,姜涛,刘彦伯,吴新锋,赵远涛. 船舶减阻表面工程技术研究进展. 表面技术. 2022(09): 53-64+73 .
![]() |