HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1638-1647. DOI: 10.13801/j.cnki.fhclxb.20210611.001
Citation: HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1638-1647. DOI: 10.13801/j.cnki.fhclxb.20210611.001

Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber

More Information
  • Received Date: April 07, 2021
  • Revised Date: May 16, 2021
  • Accepted Date: May 30, 2021
  • Available Online: June 14, 2021
  • The development of superhydrophobic materials in practical applications has been severely hindered by the complexity of manufacturing and the sensitivity to mechanical contact. In order to prepare a mechanically durable flexible super-hydrophobic surface on the surface of a flexible substrate (vulcanized silicone rubber), using the reversible characteristics of the swelling process of vulcanized silicone rubber and the improved sol-gel method, the silicone rubber sheet was swelled with a n-butylamine aqueous solution in advance, and then immersed in zinc nitrate/ethanol solution. Due to the cross-diffusion, contact and reaction between zinc nitrate and n-butylamine aqueous solution on the surface of silicone rubber, ZnO nanoflowers were grown in-situ on the rubber surface. The construction of the superhydrophobic rough structure came from the synergistic effect of zinc nitrate and n-butylamine, with static contact angle and rolling angle being (158±1.5)° and (4.5±0.5)° respectively. SEM images show that ZnO nanosheets of 100-200 nm in thickness are generated and the ZnO nanosheets are “embedded”, not just “deposited” on the rubber surface, which improves the mechanical durability. By adding a silane coupling agent γ-aminopropyltriethoxysilane (KH550) to the silicone rubber compounds, the interface interaction between the ZnO nanosheets and the rubber matrix is further improved. Even with 300 times of linear wear, it could still maintain superhydrophobic and exhibit excellent mechanical stability. Moreover, after 500 cycles of bending deformation, its hydrophobicity hardly changes, which solves the problem of superhydrophobic coating falling off when the substrate is bent and deformed. High mechanical stability and simple preparation process endow the superhydrophobic rubber a high application prospect.
  • [1]
    WANG J, KAPLAN J A, COLSON Y L, et al. Stretch-induced drug delivery from superhydrophobic polymer composites: Use of crack propagati on failure modes for controlling release rates[J]. Angewandte Chemie International Edition,2016,55:2796-2800. DOI: 10.1002/anie.201511052
    [2]
    ZHOU J C, FRANK M A, YANG Y Y, et al. A novel local drug delivery system: superhydrophobic tita-nium oxide nano-tube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. DOI: 10.1016/j.msec.2017.08.066
    [3]
    胡立琼, 雷鸣, 邱亚群, 等. 仿生超疏水表面在建筑和生物医药领域的研究进展[J]. 广东化工, 2016, 43(17):100-102. DOI: 10.3969/j.issn.1007-1865.2016.17.045

    HU L Q, LEI M, QIU Y Q, et al. Application of biomimetic super-hydrophobic surface in construction and biological medicine field—A review[J]. Guangdong Journal of Che-mical Engineering,2016,43(17):100-102(in Chinese). DOI: 10.3969/j.issn.1007-1865.2016.17.045
    [4]
    MALEKIDELARESTAQI M, MANSOURI A, CHINI S F. Electrokinetic energy conversion in a finite length superhydrophobic microchannel[J]. Chemical Physics Letters,2018,703:72-79. DOI: 10.1016/j.cplett.2018.05.007
    [5]
    XUE X P, WANG S Q, ZHAN G C, et al. Fabrication of Ni Co coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection[J]. Surface and Coatings Technology,2019,363:352-361. DOI: 10.1016/j.surfcoat.2019.02.056
    [6]
    MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano,2010,4:7699-7707. DOI: 10.1021/nn102557p
    [7]
    莫春燕, 郑燕升, 王发龙, 等. TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J]. 中国表面工程, 2015, 28(2):132-137. DOI: 10.11933/j.issn.1007-9289.2015.02.016

    MO C Y, ZHENG Y S, WANG F L, et al. Preparation and property of TiO2/PMHS superhydrophobic and anticorrosive coating[J]. New Chemical Materials,2015,28(2):132-137(in Chinese). DOI: 10.11933/j.issn.1007-9289.2015.02.016
    [8]
    GALOPIN E, PIRET G, SZUNERITS S, et al. Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires[J]. Langmuir,2010,26(5):3479-3484. DOI: 10.1021/la9030377
    [9]
    周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007(8):164-168.

    ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding and its applications[J]. Acta Physico-Chimica Sinica,2007(8):164-168(in Chinese).
    [10]
    PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Material,2018,17(4):355-360. DOI: 10.1038/s41563-018-0044-2
    [11]
    CHEN F F, YANG Z Y, ZHU Y J, et al. Low-cost and scaled-up production of fluorine-free, sub-strate-independent, large-area superhydrophobic coatings based on hydroxyapatite nanowire bundles[J]. Chemistry-A European Journal,2018,24:416-424. DOI: 10.1002/chem.201703894
    [12]
    LEE W K, JUNG W B, RHEE D, et al. Monolithic polymer nanoridges with programmable wetting transitions[J]. Advanced Materials,2018,30(32):1706657.
    [13]
    ZHU C, GAO Y, HUANG Y, et al. Controlling states of water droplets on nanostructured surfaces by design[J]. Nanoscale,2017,9(46):18240-18245. DOI: 10.1039/C7NR06896D
    [14]
    VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology,2019,375:100-111. DOI: 10.1016/j.surfcoat.2019.07.005
    [15]
    马宁, 程丹, 张景强, 等. 激光刻蚀法制备GH4169超疏水表面及性能研究[J]. 中国铸造装备与技术, 2020, 55(2):40-45. DOI: 10.3969/j.issn.1006-9658.2020.02.010

    MA N, CHENG D, ZHANG J Q, et al. Preparation and properties of GH4169 super-hydrophobic surface by laser etching[J]. China Foundry Machinery & Technology,2020,55(2):40-45(in Chinese). DOI: 10.3969/j.issn.1006-9658.2020.02.010
    [16]
    PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328. DOI: 10.1016/j.jcis.2012.12.036
    [17]
    孙巍, 周雨辰, 陈忠仁. 基于水滴模板法的微纳复合超疏水结构制备的研究[J]. 高分子学报, 2012(12):108-113.

    SUN W, ZHOU Y C, CHEN Z R. Construction of superhydrophobic surface via secondary processing of honeycomb-patterned substrate[J]. Acta Polymerica Sinica,2012(12):108-113(in Chinese).
    [18]
    MAGHSOUDI K, MOMEN G, JAFARI R, et al. Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding[J]. Applied Surface Science,2018,458:619-628. DOI: 10.1016/j.apsusc.2018.07.099
    [19]
    MUNIRASUA S, BANATA F, DURRANI A A, et al. Intrinsically superhydrophobic PVDF mem-brane by phase inversion for membrane distillation[J]. Desalination,2017,417:77-86. DOI: 10.1016/j.desal.2017.05.019
    [20]
    WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. DOI: 10.1038/s41586-020-2331-8
    [21]
    WU J, DONG J, WANG Y, et al. Thermal oxidation ageing effects on silicone rubber sealing performance[J]. Polymer Degradation and Stability,2017,135:43-53. DOI: 10.1016/j.polymdegradstab.2016.11.017
    [22]
    DAVYDOVA M L, SOKOLOVA M D, HALDEEVA A R, et al. Modification of sealing rubber based on nitrile butadiene rubber by thermoexpanded graphite[J]. Journal of Friction & Wear,2015,36(1):23-28.
    [23]
    PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2020,582(7810):355-360.
    [24]
    PENG C Y, CHEN Z Y, TIWARI M K, et al. Analysis of wear abrasion resistance of superhydrophobic acrylonitrile butadiene styrene rubber (ABS) nanocomposites[J]. Chemical Engineering Journal,2015,281:730-738. DOI: 10.1016/j.cej.2015.06.086
    [25]
    弯艳玲, 廉中旭, 刘志刚, 等. 高速电火花线切割制备耐用型超疏水铜表面[J]. 材料科学与工程学报, 2014, 32(5):634-637, 642.

    WAN Y L, LIAN Z X, LIU Z G, et al. Fabrication of robust super-hydrophobic copper surface by HS-WEDM[J]. Journal of Materials Science & Engineering,2014,32(5):634-637, 642(in Chinese).
    [26]
    武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4):2172-2175.

    WU Z F, LI S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(4):2172-2175(in Chinese).
  • Cited by

    Periodical cited type(7)

    1. 赵乃君,华汶乐,陈列,黄宫淇. 激光诱导硅橡胶超疏水表面及其耐磨性研究. 材料保护. 2024(09): 45-53 .
    2. 何强,王晓森,宁梦遥. 硅橡胶超疏水涂层的撒粉法制备. 中国表面工程. 2023(02): 146-154+179 .
    3. 赵亚梅,霍梦丹,曹婷婷,丁思奇,陈丽. 提升超疏水材料力学耐久性的研究进展. 复合材料学报. 2023(04): 2004-2014 . 本站查看
    4. 胡娟,肖楠,谭亦可,李文强,曾向宏,张爱霞,陈莉,陈敏剑,周远建. 2022年国内有机硅进展. 有机硅材料. 2023(03): 68-89 .
    5. 杨威,颜丙越,夏国巍,尹国华,段祺君,谢军. 纳米SiO_2改性玻璃纤维增强树脂的耐湿热老化性能. 绝缘材料. 2023(10): 50-58 .
    6. 费楚然,胡纯,文艳辉,李戎,宁洪胜,张文晶,温得浩,李建喜. 苯基硅橡胶高剂量辐射老化性能研究. 合成材料老化与应用. 2023(05): 7-10 .
    7. 郭乐扬,阮海妮,李文戈,高原,姜涛,刘彦伯,吴新锋,赵远涛. 船舶减阻表面工程技术研究进展. 表面技术. 2022(09): 53-64+73 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1050) PDF downloads (75) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return