Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Taotao, YANG Yuxin, ZHANG Erhan, et al. Artificial neural network-based mapping of microscopic damage to macroscopic stiffness in solid propellants[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4693-4705. doi: 10.13801/j.cnki.fhclxb.20240423.003
Citation: ZHANG Taotao, YANG Yuxin, ZHANG Erhan, et al. Artificial neural network-based mapping of microscopic damage to macroscopic stiffness in solid propellants[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4693-4705. doi: 10.13801/j.cnki.fhclxb.20240423.003

Artificial neural network-based mapping of microscopic damage to macroscopic stiffness in solid propellants

doi: 10.13801/j.cnki.fhclxb.20240423.003
Funds:  Project Cross Scale Analysis of Structural Damage to High Charge Ratio Energetic Propellant Charges (U22B20131) supported by National Natural Science Foundation of China - Joint Fund
  • Received Date: 2024-02-18
  • Accepted Date: 2024-04-12
  • Rev Recd Date: 2024-03-28
  • Available Online: 2024-04-23
  • Publish Date: 2024-09-15
  • As a particle-reinforced polymer composite with high inclusion ratio, the macro-mechanical properties of solid propellants depend on their meso-structures. Especially, under external loads, the stress concentration usually happens besides the regions of the initial imperfections and the particle agglomerations, leading to the interfacial debonding between the particles and the polymeric binders, consequently deteriorating macroscopic mechanical properties. How to build a relationship between the microscopic damage states and the macroscopic mechanical performances is the key issue for both the rational usage of the microscopic experimental results of solid propellants and the accurate prediction of structural disasters in solid rocket motors. For this purpose, this article develops an artificial neural network (ANN) based on the framework of continuum mechanics, with the scalar invariant of the deformation gradient tensor as the input and the scalar free energy as the output. Existing free energy functions and damage growth functions are selected as the activation functions of the ANN, and therefore the ANN can naturally satisfy the requirements of the continuum mechanics, including the deformation continuity, the coordinate invariance, and the thermodynamic consistency. These merits can guarantee the rapid convergence of the ANN with sparse training data, and additionally can obtain a bottom-up mapping of the microscopic damage states towards the macroscopic mechanical performances. Finally, using the dataset obtained from finite element analysis, the predictive ability of the ANN on the mechanical properties of solid propellants with different pre-damage states under uniaxial tension, biaxial tension, and pure shear are validated.

     

  • loading
  • [1]
    XING R S, WANG L, ZHANG F T, et al. Mechanical behavior and constitutive model of NEPE solid propellant in finite deformation[J]. Mechanics of Materials, 2022, 172: 104383. doi: 10.1016/j.mechmat.2022.104383
    [2]
    侯晓, 张旭, 刘向阳, 等. 固体火箭发动机药柱结构完整性研究进展[J]. 宇航学报, 2023, 44(4): 566-579. doi: 10.3873/j.issn.1000-1328.2023.04.011

    HOU Xiao, ZHANG Xu, LIU Xiangyang, et al. Progress of structural integrity of solid rocket motor pillars[J]. Journal of Astronautics, 2023, 44(4): 566-579(in Chinese). doi: 10.3873/j.issn.1000-1328.2023.04.011
    [3]
    武晓松, 陈军, 王栋. 固体火箭发动机原理[M]. 北京: 兵器工业出版社, 2010.

    WU Xiaosong, CHEN Jun, WANG Dong. Principles of solid rocket engine [M]. Beijing: Arms Industry Press, 2010(in Chinese).
    [4]
    强洪夫, 王稼祥, 王哲君, 等. 复合固体推进剂强度、损伤与断裂失效研究进展[J]. 推进技术, 2023, 46(7): 561-588.

    QIANG Hongfu, WANG Jiaxiang, WANG Zhejun, et al. Advances in strength, damage and fracture failure of composite solid propellants[J]. Propulsion Technology, 2023, 46(7): 561-588(in Chinese).
    [5]
    杜善义, 王彪. 复合材料细观力学[M]. 北京: 科学出版社, 1998.

    DU Shanyi, WANG Biao. Fine mechanics of composite materials [M]. Beijing: Science Press, 1998(in Chinese).
    [6]
    ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1957, 241(1226): 376-396. doi: 10.1098/rspa.1957.0133
    [7]
    GURSON A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15. doi: 10.1115/1.3443401
    [8]
    DUAN H L, WANG J, HUANG Z P, et al. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1574-1596. doi: 10.1016/j.jmps.2005.02.009
    [9]
    SHEN W Q, ZHANG J, SHAO J F, et al. Approximate macroscopic yield criteria for Drucker-Prager type solids with spheroidal voids[J]. International Journal of Plasticity, 2017, 99: 221-247. doi: 10.1016/j.ijplas.2017.09.008
    [10]
    WUBULIAISAN M, WU Y Q, HOU X, et al. Multiscale viscoelastic constitutive modeling of solid propellants subjected to large deformation[J]. International Journal of Solids and Structures, 2023, 262: 112084.
    [11]
    CANGA M E, BECKER E B, ÖZÜPEK Ş. Constitutive modeling of viscoelastic materials with damage–computational aspects[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(15-17): 2207-2226. doi: 10.1016/S0045-7825(00)00231-0
    [12]
    XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 2050-2073. doi: 10.1016/j.jmps.2007.10.013
    [13]
    LEI M, WANG J J, CHENG J M, et al. A constitutive model of the solid propellants considering the interface strength and dewetting[J]. Composites Science and Technology, 2020, 185(1): 107893.
    [14]
    LI Z, LEI M, KOU Q Q, et al. A multiscale viscoelastic constitutive model of unidirectional carbon fiber reinforced PEEK over a wide temperature range[J]. Composite Structures, 2023, 321: 117258. doi: 10.1016/j.compstruct.2023.117258
    [15]
    KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
    [16]
    HERNÁNDEZ Q, BADÍAS A, CHINESTA F, et al. Thermodynamics-informed neural networks for physically realistic mixed reality[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 407: 115912. doi: 10.1016/j.cma.2023.115912
    [17]
    REZAEI S, HARANDI A, MOEINEDDIN A, et al. A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401, Part B, 115616.
    [18]
    BRODNIK N R, MUIR C, TULSHIBAGWALE N, et al. Perspective: Machine learning in experimental solid mechanics[J]. Journal of the Mechanics and Physics of Solids, 2023, 173: 105231. doi: 10.1016/j.jmps.2023.105231
    [19]
    BAI J H, LIU G R, GUPTA A, et al. Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear partial differential equations[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 451: 116290.
    [20]
    LINKA K, KUHL E. A new family of Constitutive Artificial Neural Networks towards automated model discovery[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115731. doi: 10.1016/j.cma.2022.115731
    [21]
    MARINO E, FLASCHEL M, KUMAR S, et al. Automated identification of linear viscoelastic constitutive laws with EUCLID[J]. Mechanics of Materials, 2023, 181: 181104643.
    [22]
    WUBULIAISAN M, WU Y, HOU X. A unified viscoelastic model of progressive damage and failure for solid propellants[J]. International Journal of Plasticity, 2023, 170: 103765. doi: 10.1016/j.ijplas.2023.103765
    [23]
    LEI M, CHEN E H, ZHAO Z, et al. A temperature/strain-rate dependent finite deformation constitutive and failure model of solid propellants[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(9): 294611.
    [24]
    赵亚溥. 近代连续介质力学[M] . 北京: 科学出版社, 2016.

    ZHAO Yapu. Modern mechanics of continuous media[M]. Beijing: Science Press, 2016(in Chinese).
    [25]
    COLEMAN B D, GURTIN M E. Thermodynamics with internal state variables[J]. The Journal of Chemical Physics, 1967, 47(2): 597-613. doi: 10.1063/1.1711937
    [26]
    HOLZAPFEL G A. Nonlinear solid mechanics[M]. Wiley publisher, 2000.
    [27]
    KACHANOV L M. On time to rupture in creep conditions (in Russian) Izviestia Akademii Nauk SSSR[J]. Otdelenie Tekhnicheskikh Nauk, 1958, 8: 26-31.
    [28]
    MURAKAMI S. Continnum damage mechanics[M]. Springer, 2012.
    [29]
    LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107: 83-89. doi: 10.1115/1.3225775
    [30]
    MURAKAMI S. Mechanical modeling of material damage[J]. ASME Journal of Applied Mechanics, 1988, 55: 280-286. doi: 10.1115/1.3173673
    [31]
    HUR J, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures, 2016, 87: 110-119.
    [32]
    RIVLIN R S, SAUNDERS D W. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1951, 243: 251-288.
    [33]
    LEI M, HAMEL C M, YUAN C, et al. 3D printed two-dimensional periodic structures with tailored in-plane dynamic responses and fracture behaviors[J]. Composites Science and Technology, 2018, 159: 189-198. doi: 10.1016/j.compscitech.2018.02.024
    [34]
    CAI C, WANG B, YIN W L, et al. A new algorithm to generate non-uniformly dispersed representative volume elements of composite materials with high volume fractions[J]. Materials & Design, 2022, 219: 110750.
    [35]
    BALL J M. Convexity conditions and existence theorems in nonlinear elasticity[J]. Archive for Rational Mechanics and Analysis, 1977, 63: 337-403.
    [36]
    HARTMANN S, NEFF P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility[J]. Solids Struct, 2003, 40: 2767-2791. doi: 10.1016/S0020-7683(03)00086-6
    [37]
    PAN H, YANG J, SHI Y, et al. BP neural network application model of predicting the apple hardness[J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(9): 2802-2807. doi: 10.1166/jctn.2015.4180
    [38]
    SAID B E L. Predicting the non-linear response of composite materials using deep recurrent convolutional neural networks[J]. International Journal of Solids and Structures, 2023, 276: 112334. doi: 10.1016/j.ijsolstr.2023.112334
    [39]
    MOONEY M. A theory of large elastic deformations[J]. Journal of Applied Physics, 1940, 11(9): 582-592. doi: 10.1063/1.1712836
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (149) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return