Volume 41 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
CAI Chenyang, DING Chunxiang, WU Xiaodan, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5665-5676.
Citation: CAI Chenyang, DING Chunxiang, WU Xiaodan, et al. Research progress of biomass cellulose based daytime radiative cooling materials[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5665-5676.

Research progress of biomass cellulose based daytime radiative cooling materials

Funds:  Natural Science Foundation of Jiangsu Province (BK20230404); Start-up Funds for Scientific Research at the Nanjing Forestry University
  • Received Date: 2024-02-27
  • Accepted Date: 2024-04-27
  • Rev Recd Date: 2024-04-19
  • Available Online: 2024-05-28
  • Publish Date: 2024-11-15
  • Radiative cooling is a zero-consumption passive cooling technology, which can realize cooling via infrared radiation, showing great application in mitigating global warming and energy consumption. To date, traditional daytime radiative cooling materials are produced from petroleum, such as photonics, optical metamaterials, inorganic coatings, which are costly, complex to process, and unrenewable. Biomass cellulose show great application in daytime radiative cooling field due to its high infrared emissivity, renewable, and easy processable property. In this paper, based on the fundamental principle of radiative cooling, the physical and optical mechanism of daytime radiative cooling was firstly discussed. We divided the cellulose based daytime radiative cooling materials into cooling films, cooling fabrics, cooling aerogels, and cooling structural materials based on the structure and morphology. We also elucidated the mechanism of the influence of different structures of cellulose on the daytime radiative cooling performance at the micro and nano scales. Finally, the future research and development direction of cellulose-based radiative cooling materials are discussed: the biomass based daytime radiative cooling materials with high cooling power and dynamic/smart function is highly demand in the future.

     

  • loading
  • [1]
    WU X K, LI J L, XIE F, et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance[J]. Nat Commun, 2024, 15(1): 815. doi: 10.1038/s41467-024-45095-4
    [2]
    XIONG L H, WEI Y, CHEN C L, et al. Thin lamellar films with enhanced mechanical properties for durable radiative cooling[J]. Nature Communications, 2023, 14(1): 6129. doi: 10.1038/s41467-023-41797-3
    [3]
    FAN S H, LI W. Photonics and thermodynamics concepts in radiative cooling[J]. Nature Photonics, 2022, 16(3): 182-190. doi: 10.1038/s41566-021-00921-9
    [4]
    ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287. doi: 10.1073/pnas.1509453112
    [5]
    ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696. doi: 10.1126/science.abi5484
    [6]
    ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. doi: 10.1126/science.aai7899
    [7]
    ZHAO X P, LI T Y, XIE H, et al. A solution-processed radiative cooling glass[J]. Science, 2023, 382(6671): 684-691. doi: 10.1126/science.adi2224
    [8]
    LIN K X, CHEN S R, ZENG Y J, et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity[J]. Science, 2023, 382(6671): 691-697. doi: 10.1126/science.adi4725
    [9]
    MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. doi: 10.1126/science.aat9513
    [10]
    CAI C Y, SUN Y B, CHEN Y, et al. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 421-429. doi: 10.1016/j.jobab.2023.06.004
    [11]
    ZHANG K, MO C Q, TANG X L, et al. Hierarchically Porous Cellulose-Based Radiative Cooler for Zero-Energy Food Preservation[J]. ACS Sustain Chem Eng, 2023, 11(20): 7745-7754. doi: 10.1021/acssuschemeng.3c00170
    [12]
    ZHAO D L, AILI A, ZHAI Y, et al. Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling[J]. Joule, 2019, 3(1): 111-123. doi: 10.1016/j.joule.2018.10.006
    [13]
    WANG Q Q, ZHOU R, SUN J Z, et al. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures[J]. ACS Nano, 2022, 16(9): 13468-13491. doi: 10.1021/acsnano.2c04883
    [14]
    GENG A B, HAN Y M, CAO J Y, et al. Strong double networked hybrid cellulosic foam for passive cooling[J]. International Journal of Biological Macromolecules, 2024, 264: 130676. doi: 10.1016/j.ijbiomac.2024.130676
    [15]
    YE Y H, YU L, LIZUNDIA E, et al. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices[J]. Chemical Reviews, 2023, 123(15): 9204-9264. doi: 10.1021/acs.chemrev.2c00618
    [16]
    CAI C Y, WEI Z C, DENG L X, et al. Temperature-Invariant Superelastic Multifunctional MXene Aerogels for High-Performance Photoresponsive Supercapacitors and Wearable Strain Sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54170-54184.
    [17]
    SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose[J]. Biomacromolecules, 2007, 8(8): 2485-2491. doi: 10.1021/bm0703970
    [18]
    SHANKER R, RAVI ANUSUYADEVI P, GAMAGE S, et al. Structurally Colored Cellulose Nanocrystal Films as Transreflective Radiative Coolers[J]. ACS Nano, 2022, 16(7): 10156-10162. doi: 10.1021/acsnano.1c10959
    [19]
    GAMAGE S, KANG E S H, ÅAKERLIND C, et al. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling[J]. Journal of Materials Chemistry C, 2020, 8(34): 11687-11694. doi: 10.1039/D0TC01226B
    [20]
    ZHU W K, DROGUET B, SHEN Q C, et al. Structurally Colored Radiative Cooling Cellulosic Films[J]. Advanced Science, 2022, 9(26): 2202061. doi: 10.1002/advs.202202061
    [21]
    GAMAGE S, KANG E S H, ÅKERLIND C, et al. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling[J]. Journal of Materials Chemistry C, 2020, 8(34): 11687-11694. doi: 10.1039/D0TC01226B
    [22]
    ZHU W K, ZHANG Y, MOHAMMAD N, et al. Large-scale industry-compatible sub-ambient radiative cooling pulp[J]. Cell Reports Physical Science, 2022, 3(11): 101125. doi: 10.1016/j.xcrp.2022.101125
    [23]
    TIAN Y P, SHAO H, LIU X J, et al. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22521-22530.
    [24]
    SUN H D, CHEN Y W, ZENG W C, et al. Solution-processable, robust and sustainable cooler via nano-structured engineering[J]. Carbohydrate Polymers, 2023, 314: 120948. doi: 10.1016/j.carbpol.2023.120948
    [25]
    JARAMILLO-FERNANDEZ J, YANG H, SCHERTEL L, et al. Highly-Scattering Cellulose-Based Films for Radiative Cooling[J]. Advanced Science, 2022, 9: 2104758. doi: 10.1002/advs.202104758
    [26]
    CAI C Y, CHEN F L, WEI Z C, et al. Large scalable, anti-ultraviolet, strong cellulose film with well-defined dual-pores for longtime daytime radiative cooling[J]. Chemical Engineering Journal, 2023, 476: 146668. doi: 10.1016/j.cej.2023.146668
    [27]
    XIANG B, ZHANG R, LUO Y C, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. doi: 10.1016/j.nanoen.2020.105600
    [28]
    CHEN X, HE M, FENG S J, et al. Cellulose-based porous polymer film with auto-deposited TiO2 as spectrally selective materials for passive daytime radiative cooling[J]. Optical Materials, 2021, 120: 111431. doi: 10.1016/j.optmat.2021.111431
    [29]
    FENG S J, ZHOU Y M, LIU C H, et al. Skeleton-inspired optical-selective cellulose-based bio-film as passive radiative cooler and the energy-saving performance evaluation[J]. Chemical Engineering Journal, 2023, 452: 139377. doi: 10.1016/j.cej.2022.139377
    [30]
    LIU C H, FENG S J, HE M, et al. 3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling[J]. Materials Today Communications, 2022, 31: 103530. doi: 10.1016/j.mtcomm.2022.103530
    [31]
    SUN H D, TANG F J, CHEN Q F, et al. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort[J]. Chemical Engineering Journal, 2023, 455: 139786. doi: 10.1016/j.cej.2022.139786
    [32]
    FENG S J, ZHOU Y M, CHEN X, et al. Bio-skin inspired 3D porous cellulose/AlPO4 nano-laminated film with structure-enhanced selective emission for all-day non-power cooling[J]. Journal of Materials Chemistry A, 2021, 9(44): 25178-25188. doi: 10.1039/D1TA07576D
    [33]
    SUN H D, TANG F J, BI Y H, et al. Hierarchically Porous Cellulose Membrane via Self-Assembly Engineering for Ultra High-Power Thermoelectrical Generation in Natural Convection[J]. Advanced Functional Materials, 2023, 33(52): 2307960. doi: 10.1002/adfm.202307960
    [34]
    ZHONG H M, LI Y N, ZHANG P, et al. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings[J]. ACS Nano, 2021, 15(6): 10076-10083. doi: 10.1021/acsnano.1c01814
    [35]
    DINUWAN GUNAWARDHANA K R S, SIMORANGKIR R B V B, MCGUINNESS G B, et al. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems[J]. ACS Nano, 2024, 18(4): 2649-2684. doi: 10.1021/acsnano.3c09077
    [36]
    ZHANG Y, ZHU W K, ZHANG C, et al. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric[J]. Nano Letters, 2022, 22(7): 2618-2626. doi: 10.1021/acs.nanolett.1c04143
    [37]
    LI J L, LIANG Y, LI W, et al. Protecting ice from melting under sunlight via radiative cooling[J]. Science Advances, 2022, 8(6): eabj9756. doi: 10.1126/sciadv.abj9756
    [38]
    LI J G, TANG F J, BI Y H, et al. Engineering biomimetic cellulose fabric for sustainably and durably cooling human body[J]. Nano Energy, 2023, 117: 108921. doi: 10.1016/j.nanoen.2023.108921
    [39]
    GAMAGE S, BANERJEE D, ALAM M M, et al. Reflective and transparent cellulose-based passive radiative coolers[J]. Cellulose, 2021, 28(14): 9383-9393. doi: 10.1007/s10570-021-04112-1
    [40]
    DU L L, ZHOU Z G, LI J J, et al. Highly efficient subambient all-day passive radiative cooling textiles with optically responsive MgO embedded in porous cellulose acetate polymer[J]. Chemical Engineering Journal, 2023, 469: 143765. doi: 10.1016/j.cej.2023.143765
    [41]
    YANG W Q, XIAO P, LI S, et al. Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation[J]. Small, 2023, 19(30): 2302509. doi: 10.1002/smll.202302509
    [42]
    LIU X H, ZHANG M T, HOU Y Z, et al. Hierarchically Superhydrophobic Stereo-Complex Poly (Lactic Acid) Aerogel for Daytime Radiative Cooling[J]. Advanced Functional Materials, 2022, 32(46): 2207414. doi: 10.1002/adfm.202207414
    [43]
    CAI C Y, WEI Z C, DING C X, et al. Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building[J]. Nano Lett, 2022, 22(10): 4106-4114. doi: 10.1021/acs.nanolett.2c00844
    [44]
    CAI C Y, CHEN W B, WEI Z C, et al. Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings[J]. Nano Energy, 2023, 114: 108625. doi: 10.1016/j.nanoen.2023.108625
    [45]
    WANG Q, ZHONG S L, ZHENG Z H, et al. Bacterial cellulose based three-dimensional porous composites with remarkable amphiphobic monolith properties for passive daytime radiative cooling[J]. Materials Letters, 2023, 352: 135220. doi: 10.1016/j.matlet.2023.135220
    [46]
    CAI C Y, CHEN Y, DING C X, et al. Eliminating trade-offs between optical scattering and mechanical durability in aerogels as outdoor passive cooling metamaterials[J]. Materials Horizons, 2024, 11: 1502-1514 doi: 10.1039/D3MH01802D
    [47]
    ZHONG S J, YUAN S X, ZHANG X, et al. Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling[J]. ACS Appl Mater Inter, 2023, 15(33): 39807-39817. doi: 10.1021/acsami.3c06178
    [48]
    SHE Y N, WANG J, ZHU C F, et al. From nature back to nature: Spectrally modified poplar and its all-day passive radiative cooling[J]. Industrial Crops and Products, 2023, 193: 116242. doi: 10.1016/j.indcrop.2023.116242
    [49]
    HU X, ZHANG Y B, ZHANG J, et al. Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications[J]. Renewable Energy, 2022, 193: 398-406. doi: 10.1016/j.renene.2022.05.008
    [50]
    LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. doi: 10.1126/science.aau9101
    [51]
    CHEN Y P, DANG B K, FU J Z, et al. Cellulose-Based Hybrid Structural Material for Radiative Cooling[J]. Nano Letters, 2021, 21(1): 397-404. doi: 10.1021/acs.nanolett.0c03738
    [52]
    LI G W, HUANG J W, ZHOU J, et al. A flame-retardant wood-based composite with magnesium–aluminium layered double hydroxides for efficient daytime radiative cooling[J]. Journal of Materials Chemistry A, 2024, 12(3): 1609-1616. doi: 10.1039/D3TA06065A
    [53]
    PIAO X X, CAO Y W, GUO H X, et al. Multifunctional Bamboo Fiber Hybrid Structural Materials for Daytime Radiation Cooling[J]. ACS Sustain Chem Eng, 2022, 10(48): 15692-15698. doi: 10.1021/acssuschemeng.2c03801
    [54]
    SUN H, HOU C Y, JI T, et al. Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building[J]. Composites Part B: Engineering, 2023, 250: 110426. doi: 10.1016/j.compositesb.2022.110426
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (165) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return