TU Wenying, ZHANG Haiyan, LIN Jin, et al. Preparation and properties of multilayer graphite/silicon resin thermal conductive materials[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 70-74.
Citation: TU Wenying, ZHANG Haiyan, LIN Jin, et al. Preparation and properties of multilayer graphite/silicon resin thermal conductive materials[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 70-74.

Preparation and properties of multilayer graphite/silicon resin thermal conductive materials

More Information
  • Received Date: February 16, 2012
  • Revised Date: April 28, 2012
  • With silicon resin as the base matrix materials, filled with multilayer graphite, the thermal conductive multilayer graphite/silicon resin composites were prepared by using the method of rotating-mixer. The effect of filler on the thermal conductivity, coefficient of thermal expansion (CTE) and the thermal stability of the composites were investigated. Results show that the multilayer graphite in silicon resin has good dispersibility. The thermal conductivity of the composites increases with the increasing content of multilayer graphite, and it reaches 2.26 W?(m稫)-1 when the mass fraction of the filler is 45%, and it begins to decrease when the mass fraction of the filler higher than 45%. CTE decreases as the filler loading increasing. The thermal stability of the silicone resin can be effectively improved through adding multilayer graphite. With the same filler loading, multilayer graphite filled silicone resin possesses higher thermal conductivity compared to SiC and AlN filled silicone resin. It proves that the flake graphite with big radius-thickness ratio can be more likely to form thermal network and improve the thermal contact.
  • Related Articles

    [1]SUN Jie, SHEN Zihao, LIAO Haifeng. Investigation on compressive strength of fiber reinforced concrete subjected to the coupling effects of freeze-thaw cycling and loading utilizing fractal theory[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6101-6110. DOI: 10.13801/j.cnki.fhclxb.20240417.003
    [2]ZHAO Yu, SHEN Guanghai, ZHU Lingli, DING Yahong, GUAN Xuemao. Fractal dimension-based fine-scale damage law for uniaxial compression test of 3D printed steel slag cementitious materials[J]. Acta Materiae Compositae Sinica.
    [3]ZHANG Wei, LIU Chao, LIU Huawei, LIN Xin, ZHANG Zhining. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4733-4744. DOI: 10.13801/j.cnki.fhclxb.20221014.004
    [4]DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916. DOI: 10.13801/j.cnki.fhclxb.20200212.004
    [5]SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1774-1784. DOI: 10.13801/j.cnki.fhclxb.20190917.002
    [6]WANG Ling, HE Chunxia. 3D simulation and fractal characterization of nano particles dispersion in SiC/PTFE composites[J]. Acta Materiae Compositae Sinica, 2012, (6): 144-151.
    [7]HE Fei, HE Xiaodong, LI Yao. Fractal characteristic of the porous structure of the additive silica xerogels[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 81-85.
    [8]HU Ming, ZHENG Fu, FEI Wei-dong, WANG Li-dong, YAO Zhong-kai. STUDY ON THE RELATIONSHIP BETWEEN THERMAL EXPANSION BEHAVIOR AND INTERNAL STRESSES OF AN SiC WHISKER REINFORCED COMPOSITE[J]. Acta Materiae Compositae Sinica, 2002, 19(5): 57-61.
    [9]Dai Lanhong, Wu Guozhang. RELATION BETWEEN FRACTURE TOUGHNESS AND FRACTAL DIMENSION OF FRACTURE SURFACE FOR PP/AT COMPOSITES[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 70-74.
    [10]Lin Guangming, Zeng Hanmin, Zhang Mingqiu. FRACTAL CHARACTERIZATION OF FRACTURED SURFACES IN A RESIN BASED COMPOSITE[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 13-16.
  • Cited by

    Periodical cited type(4)

    1. 陈安才. 基于光催化法的焦化废水处理技术研究. 山西化工. 2023(09): 232-233+236 .
    2. 张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 .
    3. 刘宝河,王智,李政辉,孟冠华,余浩然. TiO_2/MWCNTs光催化氧化法深度处理焦化废水生化尾水. 环境科学与技术. 2022(01): 92-100 .
    4. 李恒,罗秋艳,王光辉,黄正根,胡德玉,滕鹏飞. 石墨烯复合光催化材料在环境治理中的应用研究进展. 应用化工. 2021(04): 1113-1117 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1400) PDF downloads (930) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return