You Shaojian, Wang Zhenming. BUCKLING OF LAMINATED AND SANDWICHED CYLINDRICAL PANNELS IN HYGROTHERMAL ENVIRONMENT[J]. Acta Materiae Compositae Sinica, 1987, 4(2): 36-Ⅳ.
Citation: You Shaojian, Wang Zhenming. BUCKLING OF LAMINATED AND SANDWICHED CYLINDRICAL PANNELS IN HYGROTHERMAL ENVIRONMENT[J]. Acta Materiae Compositae Sinica, 1987, 4(2): 36-Ⅳ.

BUCKLING OF LAMINATED AND SANDWICHED CYLINDRICAL PANNELS IN HYGROTHERMAL ENVIRONMENT

More Information
  • Received Date: April 14, 1986
  • Previous experimental studies have shown that nonlinear factor in constitutive relations for composite materials in which epoxy works as mateix will increase significantly with inceasing temperature and moisture, which makes the analysis of bulckling problems for composites difficult and complex. In the case of high temperature and moisture environment,it may give rise to a notable error to consider composites as linear material,thus a nonlinear analysis becomes necessary for composites in hygrothermal environment. A lot of experimental work needs to be done for performing the nonlinear analysis because nonlinear effects of various temperature and moisture conditions as well as fiber volumes and orientations on composites have to be determined experimentally.
  • Related Articles

    [1]HU Chunxing, HOU Yuliang, TIE Ying, LI Cheng, TIAN Keke. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847-1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001
    [2]ZHANG Qiuyue, AN Luling, YUE Xuande, LI Zhihui, GUO Jia. Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1546-1557. DOI: 10.13801/j.cnki.fhclxb.20180816.001
    [3]JIN Dafeng, LIU Zhe, FAN Zhirui. Ply optimization of composite laminate with ply drop based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 236-242. DOI: 10.13801/j.cnki.fhclxb.20140408.001
    [4]XU Yangjian, LI Xiangyu, WANG Xiaogui. Genetic algorithm based inverse analysis for functionally graded material parameters[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 170-176.
    [5]FENG Xiaobing, HUANG Hai, WANG Wei. Strength optimization of large wind turbine blade root on the genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (5): 196-202.
    [6]CHEN Luyun, ZHANG Yufang. Composite material structural-acoustic optimization based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (3): 203-207.
    [7]LI Shuo, XU Yuanming, ZHANG Jun. COMPOSITE STRUCTURAL OPTIMIZATION DESIGN BASED ON NEURAL NETWORK RESPONSE SURFACES[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 134-140.
    [8]ZHANG Zhifeng, CHEN Haoran, LI Xuan, JIANG Yuanxing. HYBRID GENETIC ALGORITHM FOR OPTIMUM DESIGN OFADVANCED GRID COMPOSITE CIRCULAR CYLINDERS[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 166-171.
    [9]YAO Wei, TAN Hui-feng, DU Xing-wen. APPLICATION OF GENETIC ALGORITHM TO MULTIOBJECTIVE OPTIMIZATION OF TIRE STRUCTURE[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 109-113.
    [10]Luo Zhijun, Qiao Xin. OPTIMIZATION OF PLY STACKING SEQUENCE FOR NATURAL FREQUENCIES OF COMPOSITE LAMINATES BY GENETIC ALGORITHM[J]. Acta Materiae Compositae Sinica, 1997, 14(4): 114-118.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return