Liu Ping, Zhang Kaida. A NEW ANALYSIS FOR THE STATIC STRENGTH OF BOLTED JOINT IN COMPOSITE LAMINATES[J]. Acta Materiae Compositae Sinica, 1992, 9(2): 19-23.
Citation: Liu Ping, Zhang Kaida. A NEW ANALYSIS FOR THE STATIC STRENGTH OF BOLTED JOINT IN COMPOSITE LAMINATES[J]. Acta Materiae Compositae Sinica, 1992, 9(2): 19-23.

A NEW ANALYSIS FOR THE STATIC STRENGTH OF BOLTED JOINT IN COMPOSITE LAMINATES

More Information
  • Received Date: April 30, 1990
  • A new finite element program was developed for analyzing the static strength of bolted joint in composite laminates.Based upon the failure characteristic ply by ply from circumference to inner region,Tsai-Wu tensor criterion was suggested in predicting the ply failure,and the reduced modulas of failed ply of elements was supposed to revalue its residual sustaining load capacity.Two fracture rnodels were also introduced in estimating the failure of mechanical joints.Theoretical results of ultimate stress as well as failure propagation or model were given for 21 different orintations of T300/648 Carbon/epoxy composite laminates.These results are of satisfactorv agreement with the testing data.
  • Related Articles

    [1]HU Chunxing, HOU Yuliang, TIE Ying, LI Cheng, TIAN Keke. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847-1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001
    [2]ZHANG Qiuyue, AN Luling, YUE Xuande, LI Zhihui, GUO Jia. Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1546-1557. DOI: 10.13801/j.cnki.fhclxb.20180816.001
    [3]JIN Dafeng, LIU Zhe, FAN Zhirui. Ply optimization of composite laminate with ply drop based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 236-242. DOI: 10.13801/j.cnki.fhclxb.20140408.001
    [4]XU Yangjian, LI Xiangyu, WANG Xiaogui. Genetic algorithm based inverse analysis for functionally graded material parameters[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 170-176.
    [5]FENG Xiaobing, HUANG Hai, WANG Wei. Strength optimization of large wind turbine blade root on the genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (5): 196-202.
    [6]CHEN Luyun, ZHANG Yufang. Composite material structural-acoustic optimization based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (3): 203-207.
    [7]LI Shuo, XU Yuanming, ZHANG Jun. COMPOSITE STRUCTURAL OPTIMIZATION DESIGN BASED ON NEURAL NETWORK RESPONSE SURFACES[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 134-140.
    [8]ZHANG Zhifeng, CHEN Haoran, LI Xuan, JIANG Yuanxing. HYBRID GENETIC ALGORITHM FOR OPTIMUM DESIGN OFADVANCED GRID COMPOSITE CIRCULAR CYLINDERS[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 166-171.
    [9]YAO Wei, TAN Hui-feng, DU Xing-wen. APPLICATION OF GENETIC ALGORITHM TO MULTIOBJECTIVE OPTIMIZATION OF TIRE STRUCTURE[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 109-113.
    [10]Luo Zhijun, Qiao Xin. OPTIMIZATION OF PLY STACKING SEQUENCE FOR NATURAL FREQUENCIES OF COMPOSITE LAMINATES BY GENETIC ALGORITHM[J]. Acta Materiae Compositae Sinica, 1997, 14(4): 114-118.

Catalog

    Article Metrics

    Article views (940) PDF downloads (546) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return