Xu Yongdong, Zhang Litong. MECHANICAL PROPERTIES AND MICROSTRUCTURE OF TORTOISE SHELL[J]. Acta Materiae Compositae Sinica, 1995, 12(3): 53-57.
Citation: Xu Yongdong, Zhang Litong. MECHANICAL PROPERTIES AND MICROSTRUCTURE OF TORTOISE SHELL[J]. Acta Materiae Compositae Sinica, 1995, 12(3): 53-57.

MECHANICAL PROPERTIES AND MICROSTRUCTURE OF TORTOISE SHELL

More Information
  • Received Date: September 07, 1993
  • Revised Date: June 27, 1994
  • In the present paper,the mechanical properties and microstructure of a tortoise shell are studied.The flexural strength in the specimen varies with different parts and loading directions.The maximum flexural strength is 165.1MPa,and fracture toughness is 36.4MPa√m.The shell is comprised of base plates in a rectangle shape.The base plate includes a dense part and loose part.In the dense part,Harversian system is the basic structural unit.There exists Volkmann vessel at its center.The elongated Ca5(PO4)3(OH) crystals are orientationally arranged around the Volkmann vessel.In the loose part,several elongated crystals assemble together and disperse at random,of which the aspect ratio is greater than that in the dense part.There is an organic film between the crystals.The excellent toughness of the shell is attributed to the organic film between crystals and to the organic fibers in the volkmann vessel.
  • Related Articles

    [1]JU Xiaozhe, ZHU Jiawen, LIANG Lihua, XU Yangjian. Reduced order homogenization of graphene nanocomposites and its numerical implementation[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4362-4370. DOI: 10.13801/j.cnki.fhclxb.20210202.002
    [2]XIA Zhenting, ZHONG Yifeng, HUANG Ziang, MEI Baoping. Micromechanics modeling of time-dependent, nonlinear and multiphysics response of metal core piezoelectric and piezomagnetic fibers reinforced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2747-2755. DOI: 10.13801/j.cnki.fhclxb.20170308.001
    [3]ZHANG Rui, WEN Lihua, YANG Linya, XIAO Jinyou. Realization methods of computational homogenization for thermal conductivity coefficient of composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1581-1587.
    [4]Permeabil ity prediction of fabric preform using homogenization method[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 90-93.
    [5]Multi-dimensional nonclassical heat conduction analysis with multiple spatial and temporal scales analysis method[J]. Acta Materiae Compositae Sinica, 2009, 26(01): 123-133.
    [6]DONG Jiwei, SUN Liangxin, HONG Ping. HOMOGENIZATION-BASED METHOD FOR SIMULATING MICRO-STRESS OF 3-D BRAIDED COMPOSITES[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 139-143.
    [7]ZHOU Xiaoming, HU Gengkai. PREDICTION OF EFFECTIVE NONLINEAR SUSCEPTIBILITY OF COMPOSITES[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 149-154.
    [8]Liu Shutian, Cheng Gengdong. PREDICTION OF COEFFICIENTS OF THERMAL EXPANSION FOR UNIDIRECTIONAL COMPOSITES USING HOMOGENIZATION METHOD[J]. Acta Materiae Compositae Sinica, 1997, 14(1): 76-82.
    [9]Cai Min, Cai Jian. NONLINEAR PROBLEM IN BENDING OF LAMINATED PLATE[J]. Acta Materiae Compositae Sinica, 1992, 9(2): 49-54.
    [10]Yang Qingsheng, Chen Haoran. SELF-CONSISTENT FINITE ELEMENT METHOD FOR THE PROBLEMS OF INCLUSION AND THE AVERAGE ELASTIC PROPERTIES OF COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1992, 9(1): 79-84.

Catalog

    Article Metrics

    Article views (1039) PDF downloads (486) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return