FENG Xiaobing, HUANG Hai, WANG Wei. Strength optimization of large wind turbine blade root on the genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (5): 196-202.
Citation: FENG Xiaobing, HUANG Hai, WANG Wei. Strength optimization of large wind turbine blade root on the genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (5): 196-202.

Strength optimization of large wind turbine blade root on the genetic algorithm

More Information
  • Received Date: September 27, 2011
  • Revised Date: February 28, 2012
  • For improving the ability of fiber reinforced plastic blades, especially for the maximal bending moment of the blade root, the theory of genetic algorithm(GA) was studied and applied in the optimization of the root laminate of composite blades. In allusion to the separate characteristic of the lamination shell design parameter, the integer code strategy suitable for the GA optimizing design of composite lamination shells was proposed. In analyzing the structural intensity of laminated shells, the fitness function of GA was established to optimize the structure intensity. Referencing a number of layup rules, under the condition of four different directions of the ply angles, the stacking sequence of the blade root was optimized. The result shows that there are many advantages in dealing with disperse problem, and the method is reliable and feasible.
  • Related Articles

    [1]TIAN Haozheng, QIAO Hongxia, ZHANG Yunsheng, FENG Qiong, WANG Penghui, XIE Xiaoyang. Prediction of mechanical properties of manufactured sand polymer-modified mortar based on genetic optimization algorithm-backpropagation neural network[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2026-2039. DOI: 10.13801/j.cnki.fhclxb.20240623.004
    [2]GENG Fagui, LI Qiang, SONG Xuesi, LIU Yan, LIU Peiqi, YANG Yan. Optimal design of laying sequence of composite gas cylinders based on impact damage[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 777-787. DOI: 10.13801/j.cnki.fhclxb.20210323.001
    [3]HU Chunxing, HOU Yuliang, TIE Ying, LI Cheng, TIAN Keke. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847-1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001
    [4]ZHANG Qiuyue, AN Luling, YUE Xuande, LI Zhihui, GUO Jia. Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1546-1557. DOI: 10.13801/j.cnki.fhclxb.20180816.001
    [5]LI Miaoling, TONG Junfeng, ZHAO Hongxia. Optimization model for isothermal CVI process parameters for C/C composites based on genetic algorithm and neural network[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001
    [6]JIN Dafeng, LIU Zhe, FAN Zhirui. Ply optimization of composite laminate with ply drop based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 236-242. DOI: 10.13801/j.cnki.fhclxb.20140408.001
    [7]CHEN Luyun, ZHANG Yufang. Composite material structural-acoustic optimization based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (3): 203-207.
    [8]ZHANG Zhifeng, CHEN Haoran, LI Xuan, JIANG Yuanxing. HYBRID GENETIC ALGORITHM FOR OPTIMUM DESIGN OFADVANCED GRID COMPOSITE CIRCULAR CYLINDERS[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 166-171.
    [9]YAO Wei, TAN Hui-feng, DU Xing-wen. APPLICATION OF GENETIC ALGORITHM TO MULTIOBJECTIVE OPTIMIZATION OF TIRE STRUCTURE[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 109-113.
    [10]Luo Zhijun, Qiao Xin. OPTIMIZATION OF PLY STACKING SEQUENCE FOR NATURAL FREQUENCIES OF COMPOSITE LAMINATES BY GENETIC ALGORITHM[J]. Acta Materiae Compositae Sinica, 1997, 14(4): 114-118.

Catalog

    Article Metrics

    Article views (1064) PDF downloads (709) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return