LI Zhonghua, LI Yinghui. Muti-mode coupled transverse vibration of the axially moving viscoelastic sandwich plate[J]. Acta Materiae Compositae Sinica, 2012, (3): 219-225.
Citation: LI Zhonghua, LI Yinghui. Muti-mode coupled transverse vibration of the axially moving viscoelastic sandwich plate[J]. Acta Materiae Compositae Sinica, 2012, (3): 219-225.

Muti-mode coupled transverse vibration of the axially moving viscoelastic sandwich plate

More Information
  • Received Date: May 29, 2011
  • Revised Date: November 05, 2011
  • Based on the theory of small deflection of thin plate and the constitutive description of Kelvin-Viogt viscoelastic material, the controlling equation which dominates the transverse vibration of the axially moving viscoelastic sandwich plate was established, followed by the study of the transverse vibration characteristic. One-mode and two-mode eigenequation were obtained by using 1-term and 2-term Galerkin truncation. The influence of the ratio of the core and axially moving velocity on the transverse vibration characteristic was discussed. It is found that both 1-term and 2-term Galerkin truncation results fit well when the axially moving velocity doesn't exceed the critical velocity. However, 1-term Galerkin truncation will not suit any more when the axially moving velocity exceeds the critical velocity. For simply supported plate at four sides, the critical velocity and coupled mode flutter velocity increase with the decrease of ratio of core.
  • Related Articles

    [1]MEI Baoping, ZHONG Yifeng, HUANG Ziang, XIA Zhenting. Micromechanics modeling of piezoelectro-viscoelasto-plastic behavior of metal core piezoelectric fiber/polymer composites[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 229-237. DOI: 10.13801/j.cnki.fhclxb.20170412.007
    [2]ZHONG Yunjiao, BIAN Wenfeng. Micromechanics analysis of high modulus carbon fibers[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 668-674. DOI: 10.13801/j.cnki.fhclxb.20160418.026
    [3]ZHONG Yifeng, LI Xiao, MEI Baoping, ZHOU Xiaoping. A variational asymptotic micromechanics model for effective properties of magnetostrictive composites[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 574-581. DOI: 10.13801/j.cnki.fhclxb.20160523.013
    [4]ZHONG Yifeng, QIN Wenzheng, ZHANG Liangliang, ZHOU Xiaoping. A variational asymptotic micromechanical model for hygrothermoelastic properties of composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2197-2204. DOI: 10.13801/j.cnki.fhclxb.20160118.002
    [5]ZHONG Yifeng, JIAO Lichao, ZHOU Xiaoping, YANG Wenwen, YANG Dandan. Micromechanical modelling for electro-magneto-thermo-elastic coupling behavior of smart materials[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1725-1732. DOI: 10.13801/j.cnki.fhclxb.20151214.002
    [6]ZHONG Yifeng, LIU Guotian, ZHOU Xiaoping, ZHANG Liangliang. Variational asymptotic micromechanical model for thermoelastoplastic behavior of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1500-1506. DOI: 10.13801/j.cnki.fhclxb.20150824.003
    [7]ZHONG Yifeng, ZHANG Liangliang, ZHOU Xiaoping, JIAO Lichao. Variational asymptotic homogenization micromechanics model for thermal conductivity of composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1173-1178. DOI: 10.13801/j.cnki.fhclxb.20141010.001
    [8]REN Jie, ZHONG Jianlin, MA Dawei. An accurate modeling method based on cord/rubber composite material micromechanics[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1516-1524.
    [9]ZHOU Chuwei, YU Jianjian, ZHOU Guangming. MICRO BEAM MODEL FOR 3D WOVEN COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 155-160.
    [10]Hu Gengkai. MICROMECHANICAL METHOD FOR PARTICULATE-REINFORCED POLYMER COMPOSITES[J]. Acta Materiae Compositae Sinica, 1997, 14(4): 85-89.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return