LI Junsheng, WANG Xiaoen, TANG Haolin, et al. Effects of porous ePTFE content on the mechanical property of ePTFE/Nafion composite proton exchange membrane and the reinforced threshold[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 22-26.
Citation: LI Junsheng, WANG Xiaoen, TANG Haolin, et al. Effects of porous ePTFE content on the mechanical property of ePTFE/Nafion composite proton exchange membrane and the reinforced threshold[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 22-26.

Effects of porous ePTFE content on the mechanical property of ePTFE/Nafion composite proton exchange membrane and the reinforced threshold

More Information
  • Received Date: March 10, 2010
  • Revised Date: June 02, 2010
  • The effect of content of porous ePTFE on the mechanical property of the ePTFE/Nafion composite proton exchange membrane was carefully investigated. The results show there is a PTFE content threshold value (ca. 20.7%, volume fraction) beyond which the composite membrane could be reinforced. The tensile strength of the composite membrane goes up with the increasing of ePTFE content when the ePTFE content is greater than the threshold value, and decreases with growing ePTFE content when the ePTFE content does not reach the threshold value. The yield strength change of the composite membranes with the ePTFE content shows similar trend.
  • Related Articles

    [1]TIAN Haozheng, QIAO Hongxia, ZHANG Yunsheng, FENG Qiong, WANG Penghui, XIE Xiaoyang. Prediction of mechanical properties of manufactured sand polymer-modified mortar based on genetic optimization algorithm-backpropagation neural network[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2026-2039. DOI: 10.13801/j.cnki.fhclxb.20240623.004
    [2]GENG Fagui, LI Qiang, SONG Xuesi, LIU Yan, LIU Peiqi, YANG Yan. Optimal design of laying sequence of composite gas cylinders based on impact damage[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 777-787. DOI: 10.13801/j.cnki.fhclxb.20210323.001
    [3]HU Chunxing, HOU Yuliang, TIE Ying, LI Cheng, TIAN Keke. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847-1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001
    [4]ZHANG Qiuyue, AN Luling, YUE Xuande, LI Zhihui, GUO Jia. Optimization of size and layout of pressing force for composite airframe structure assembly based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1546-1557. DOI: 10.13801/j.cnki.fhclxb.20180816.001
    [5]LI Miaoling, TONG Junfeng, ZHAO Hongxia. Optimization model for isothermal CVI process parameters for C/C composites based on genetic algorithm and neural network[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001
    [6]JIN Dafeng, LIU Zhe, FAN Zhirui. Ply optimization of composite laminate with ply drop based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 236-242. DOI: 10.13801/j.cnki.fhclxb.20140408.001
    [7]CHEN Luyun, ZHANG Yufang. Composite material structural-acoustic optimization based on genetic algorithm[J]. Acta Materiae Compositae Sinica, 2012, (3): 203-207.
    [8]ZHANG Zhifeng, CHEN Haoran, LI Xuan, JIANG Yuanxing. HYBRID GENETIC ALGORITHM FOR OPTIMUM DESIGN OFADVANCED GRID COMPOSITE CIRCULAR CYLINDERS[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 166-171.
    [9]YAO Wei, TAN Hui-feng, DU Xing-wen. APPLICATION OF GENETIC ALGORITHM TO MULTIOBJECTIVE OPTIMIZATION OF TIRE STRUCTURE[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 109-113.
    [10]Luo Zhijun, Qiao Xin. OPTIMIZATION OF PLY STACKING SEQUENCE FOR NATURAL FREQUENCIES OF COMPOSITE LAMINATES BY GENETIC ALGORITHM[J]. Acta Materiae Compositae Sinica, 1997, 14(4): 114-118.

Catalog

    Article Metrics

    Article views (1827) PDF downloads (1128) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return