LI Jiangsu, ZHANG Yu, SUN Hao, et al. Preparation, microstructure and capability of Sm2O3/epoxy resin composite and polyacrylic acid samarium/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 43-49.
Citation: LI Jiangsu, ZHANG Yu, SUN Hao, et al. Preparation, microstructure and capability of Sm2O3/epoxy resin composite and polyacrylic acid samarium/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 43-49.

Preparation, microstructure and capability of Sm2O3/epoxy resin composite and polyacrylic acid samarium/epoxy resin composite

More Information
  • Received Date: January 02, 2010
  • Revised Date: April 25, 2010
  • Sm2O3/epoxy resin composite materials were prepared by the method of surface treatment. Polycyclic acid samarium(Sm(AA)3)/epoxy resin composite materials were prepared via the route of graft copolymerization. The composite materials microstructure was studied and compared by X-ray diffraction(XRD) and scanning electron microscope(SEM). The mechanical property of the materials was also tested and compared. Gamma energy spectrum system and Gamma vision software were used to measure and calculate their radiation shielding property. The results show that preparation of Sm(AA)3/epoxy resin composite is more complex and the element of Sm in it is more homogeneous. Its mechanical property is better than Sm2O3/epoxy resin composite . But the concentration of Sm in polyacrylic acid samarium/epoxy resin can only increase to 11%. For low energy photon, concentration of Sm is the key factor that can affect the shield capability of the composite while distribution of Sm is the key factor for high energy photon.
  • Related Articles

    [1]ZHAO Xinbo, HE Xiaohong, LV Jian, ZHAI Shaojie, ZHAN Zhixin, YANG Shangyu. Hybrid adhesive-woven lap mode and mechanical properties of steel-CFRP joints[J]. Acta Materiae Compositae Sinica.
    [2]ZHANG Qingmao, CHEN Jiannong, LIU Weixian, GUO Lijun, ZHOU Guangming. Design of composite winding joints[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 506-516. DOI: 10.13801/j.cnki.fhclxb.20200622.002
    [3]LIU Zhiming, XU Chang. Effect of adhesive thickness on mechanical properties of carbon fiber/bismaleimide resin composite flat-joggle-flat hybrid (bonded-bolted) joint[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2825-2832. DOI: 10.13801/j.cnki.fhclxb.20200121.003
    [4]DENG Yaqiong, CHEN Yang, LI Na, DUAN Yingtao, JING Min, NING Huiming, HU Ning. Mechanical properties and optimization adhesive structure of three-dimensional braided composites and metal[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2760-2767. DOI: 10.13801/j.cnki.fhclxb.20171219.001
    [5]SUN Wenbo, MA Yu'e. Effects of adhesive, filler and Z-pin on strength of composite T-joint[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 110-116. DOI: 10.13801/j.cnki.fhclxb.20170417.001
    [6]LIU Bin, XU Fei, JI Zhe, WANG Yi, XIE Wei. Modified semi-analytical method for adhesive stress of scarf joints in composite structure[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 526-533. DOI: 10.13801/j.cnki.fhclxb.20140718.002
    [7]YANG Yinhuan, ZHOU Zhengong, GUO Ying, WU Linzhi. Effect of defects in the adhesive layer on strength of adhesively bonded single-lap composites joints[J]. Acta Materiae Compositae Sinica, 2012, (5): 157-163.
    [8]MA Yu, ZHAO Qilin. Analysis of the bonded bolted hybrid composite joints&rsquo|carrying capacity[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 225-230.
    [9]WANG Chao, LI Zichen, DU Fusheng, HUANG Yudong. ANALYSIS OF ELEMENTS CONTENT ON ADHESIVE JOINT SURFACE AND I NTERFACE WITH ENERGY DISPERSIVE X-RAY SPECTROSCOPY[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 64-71.
    [10]GUAN Zhidong, YANG Chihdar. ANALYSIS OF THE STRESS IN A COMPOSITE PIPE JOINT UNDER TENSILE AND TORSIONAL LOADS[J]. Acta Materiae Compositae Sinica, 2004, 21(3): 96-101.

Catalog

    Article Metrics

    Article views (1516) PDF downloads (846) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return