Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 120-125.
Citation: Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 120-125.

Impact behavior of basalt fiber reinforced concrete

More Information
  • Received Date: October 29, 2009
  • Revised Date: January 11, 2010
  • The impacting behavior and damage evolution of basalt fiber reinforced concrete (BFRC) with different fiber mass fraction ranging from 0%~0.60% were tested using three-point bending impact equipment and ultrasonic testing technology. The continued damage detection based on ultrasonic testing was used to reveal the damage evolution process, and the stereomicroscope was applied to observe the surface cracks. The results show that the basalt fiber has little effect on the compressive strength of BFRC, but it can significantly improve the impact toughness of BFRC. The flexural toughness of BFRC with basalt fiber of 0.36%  is 2.2 times higher than that of plain concrete. The results also indicate that each specimen with various mass fraction reflects the brittle fracture behavior, but the energy absorption capacity of concrete can be effectively enhanced by basalt fibers. Contrasted with the controlled concrete, the damage variable of BFRC near destruction increases by 40%~83%. BFRC specimens show multi-cracking characteristics in the failure process, and the vice crack near the main crack is clearly observed after the final destruction.
  • Related Articles

    [1]ZHOU Huafei, JIANG Wenhong, SHI Kaixuan, XIE Ziling. Strengths of aligned steel fiber-reinforced geopolymer: Experiments and models[J]. Acta Materiae Compositae Sinica.
    [2]SHI Yuhang, MA Qinyong, XU Zifang, MA Dongdong, HUANG Kun. Nonlinear regression models of compressive performance and pore structure of rubber aggregate alkaline mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2321-2330. DOI: 10.13801/j.cnki.fhclxb.20220519.002
    [3]LIU Wei, ZHANG Yu, LI Zhu, ZHAO Fuyao, WANG Tingjun. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435. DOI: 10.13801/j.cnki.fhclxb.20210930.001
    [4]LIU Jiaxin, YIN Liqiang, LIU Shuguang, YAN Changwang, ZHANG Ju, WANG Xiaoxiao. Compressive constitutive model of polyvinyl alcohol fiber/cement composite material in frozen state[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2356-2368. DOI: 10.13801/j.cnki.fhclxb.20210622.002
    [5]LIU Shulong, WANG Fagang, LI Gongcheng, LIU Guolei, WANG Jie, QI Zhaojun. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2724-2736. DOI: 10.13801/j.cnki.fhclxb.20201013.001
    [6]ZHANG Yang, CAO Yugui, HU Zhili. Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2358-2366. DOI: 10.13801/j.cnki.fhclxb.20191223.002
    [7]ZHU Wenmo, LI Gang, YANG Xiaoping, LI Qiang. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 1-15. DOI: 10.13801/j.cnki.fhclxb.20190917.004
    [8]DENG Zongcai, GAO Weinan, SHEN Feng. Experimental and theoretical study on compressive strength of FRP rebars under different stress levels in alkali and salt solution[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2220-2231. DOI: 10.13801/j.cnki.fhclxb.20170106.001
    [9]GAO Xiang, HUANG Wei, WEI Ya, ZHONG Yanhui. Experiment and modeling for compressive strength of polyurethane grout materials[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 438-445. DOI: 10.13801/j.cnki.fhclxb.20160413.002
    [10]LI Chen, XU Xi-wu. 3D f iber waviness model and prediction of compressive strength of stitched laminates[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 179-185.

Catalog

    Article Metrics

    Article views (1715) PDF downloads (1047) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return