ZHUANG Xing-min, ZHANG Hui-ping, YAN Xiong. Acoustic emission characteristics of damage processes inself-reinforced polyethylene composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 82-87.
Citation: ZHUANG Xing-min, ZHANG Hui-ping, YAN Xiong. Acoustic emission characteristics of damage processes inself-reinforced polyethylene composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 82-87.

Acoustic emission characteristics of damage processes inself-reinforced polyethylene composites

More Information
  • Received Date: April 27, 2005
  • Revised Date: August 08, 2005
  • Upon being subjected to the external load , acoustic emission (AE) may occur f rom mat rix cracking , interface debonding , fiber f racture , etc in composite materials. U HMWPE/ HDPE composite materials were experimented to determine the event amplitude content of AE signals under tensile loads. Special specimens , designed tofail under well-defined modes such as mat rix plastic deformation and cracking , fiber-mat rix debonding , fiber breakage , delamination , etc were tested under the loads f rom zero to failure. The f racture surfaces of the specimens wereobserved by a scanning elect ron microscope ( SEM) . The AE signals were distinguished as being released fromseveral special types of damage. AE measurement s were performed subsequently for different types of U HMWPE/HDPE quasi-isot ropic laminates under the same loading conditions. The correlations are established between thedamage modes and acoustic emission event s amplitude of special specimens which exhibit the dominant damage mechanisms. The AE characteristics of damage growth processes and the fracture mechanisms in U HMWPE/ HDPEquasi2isot ropic laminates are revealed. Accumulative numbers of acoustic emission event s for different types ofU HMWPE/ HDPE quasi-isot ropic laminates vs tensile st ress curves are different from each other ; the correspondingloading levels of their same type of damage occurrence are not equal. The results show that ply stacking angles andsequences affect remarkably the damage growth process of these laminates. It is verified that the final fracture ofthese materials is caused by severe interlaminar delamination.
  • Related Articles

    [1]YANG Xujing, ZHANG Liangsheng, LI Maojun, WANG Kaiyu, FANG Wenjun. Impregnation characteristics of carbon fiber composite during ultrasonic vibration assisted RTM process[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4161-4171. DOI: 10.13801/j.cnki.fhclxb.20210302.007
    [2]DUAN Jingbo, JIANG Tao, MA Hang, SHI Shengfeng, LU Ping. Influence of typical damages on composite wing vibration characteristics[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 565-570. DOI: 10.13801/j.cnki.fhclxb.20140722.002
    [3]Vibration characteristics of 3D braided composites cantilever beam[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 172-178.
    [4]ZHU Xiaopeng, LIANG Wei, MAI Hanchao. THREE-DIMENSIONAL SOLUTIONS FOR FREE VIBRATION OF THE MAGNETO-ELECTRIC-ELASTIC COMPOSITE LAMINATE[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 130-134.
    [5]YANG Zi-chun. NONLINEAR THERMAL VIBRATION OF COMPOSITE LAMINATED PLATES ——PART Ⅱ: TEST[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 119-122.
    [6]YANG Zi-chun. NONLINEAR THERMAL VIBRATION OF COMPOSITE LAMINATED PLATES ——PART Ⅰ: THEORY AND NUMERICAL ANALYSIS[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 74-78.
    [7]WANG Jian-jiang, ZHAO Zhong-min, YE Min-hui, DU Xin-kang, WEN Jin-hua. INFLUENCES OF MECHANICAL VIBRATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SHS CERAMIC-LINED PIPES[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 55-59.
    [8]Xiang Chen, Chen Haoran, Guo Zhaopu. FLUID-STRUCTURE INTERACTION VIBRATION AND DYNAMIC RESPONSE OF COMPOSITE STIFFENED STRUCTURES[J]. Acta Materiae Compositae Sinica, 1996, 13(3): 100-104.
    [9]Deng Liangbo. VIBRATION OF LAMINATED PLATES CLAMPED AT FOUR EDGES RESTING ON WINKLER-PASTERNAK FOUNDATIONS[J]. Acta Materiae Compositae Sinica, 1993, 10(4): 49-56.
    [10]Chen Guibin, Zou Congqing. THE VIBRATION AND FLUTTER OF COMPOSITE MATERIAL LAMINATE[J]. Acta Materiae Compositae Sinica, 1992, 9(4): 1-6.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return