LI Lan, YUAN Li, LIANG Guo-zheng, et al. Effects of processing parameters on physical properties ofpoly ( urea-formaldehyde) microcapsules of epoxy resin[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 51-57.
Citation: LI Lan, YUAN Li, LIANG Guo-zheng, et al. Effects of processing parameters on physical properties ofpoly ( urea-formaldehyde) microcapsules of epoxy resin[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 51-57.

Effects of processing parameters on physical properties ofpoly ( urea-formaldehyde) microcapsules of epoxy resin

More Information
  • Received Date: October 08, 2005
  • Revised Date: January 15, 2006
  • A series of microcapsules were prepared by in-si tu polymerization with poly (urea-formaldehyde) as theshell material and the mixture of epoxy resin E-51 and butyl glycidyl ether (501 # ) as the core material. The effect sof the processing parameters , including the mass ratio of core material to shell material , final p H value , agitationrate , acidification time and heating rate , on the state of microencapsulation , the microcapsule size and it s dist ribution were discussed by L16 (45 ) orthogonal experiment . The physical properties of microcap sules were investigatedusing scanning elect ron microscopy (SEM) and optical-photographic microscopy (OM) . The state of microencapsulation is dramatically dependent on the mass ratio of core material to shell material and final p H value. Themicrocapsule surface morphologies are better when the acidification time and heating rate are properly increased.The microcap sule size decreases and it s dist ribution narrows with the increasing of agitation rate. The optimum conditions are as follows : the mass ratio of core material to shell material is 0. 8∶1 , final p H value is 2. 0~4. 0 , acidification time is 2. 0~3. 0 h , heating rate is 0. 17~0. 25 ℃·min-1 , and agitation rate is 325~350 r·min -1 .
  • Related Articles

    [1]LI Dongsheng, YANG Yingke, ZHAI Yunong, SUI Yi. Research on shape and force control technology for commercial aircraft CFRP fuselage panel assembly[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4310-4318. DOI: 10.13801/j.cnki.fhclxb.20220812.002
    [2]LI Xueting, AN Luling, YUE Xuande, ZHOU Laishui, WEI Wei. Optimization method of the number and layout of temporary fasteners in composite panel assembly of aircraft[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4102-4116. DOI: 10.13801/j.cnki.fhclxb.20210913.003
    [3]MA Limin, ZHANG Jiazhen, YUE Guangquan, LIU Jianguang, XUE Jia. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322. DOI: 10.13801/j.cnki.fhclxb.20150122.001
    [4]FAN Shangwu, ZHANG Litong, CHENG Laifei. Thermal physical properties of 3D needled C/SiC brake materials[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 56-62.
    [5]Tribological properties of 3D needled C/SiC brake materials[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 50-57.
    [6]3-D temperature field for C/C composite braking discs[J]. Acta Materiae Compositae Sinica, 2009, 26(01): 113-117.
    [7]Rapid densification and properties of C/C brake discs[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 101-105.
    [8]High performance C/ SiC brake materials and optimizing design[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 101-108.
    [9]YU Shu, LIU Genshan, LI Xibin, PU Baojian, Xiong Xiang. CONTRAST AND ANALYSIS OF PROPERTIES OF CARBON/CARBON BRAKING DISCS FROM DIFFERENT PRODUCERS[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 35-40.
    [10]Gu Chengzhong, Lin Yongwei, Shi Moiling, Wu Xuqin. STUDY OF BORON MODIFIED BISPHENOL-F TYPE PHENOLIC RESIN USED AS MATRIX IN HIGH TEMPERATURE RESISTANT BRAKE[J]. Acta Materiae Compositae Sinica, 1991, 8(4): 37-42.

Catalog

    Article Metrics

    Article views (1847) PDF downloads (949) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return