Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Xingle, YANG Junyi, CHENG Changli, et al. Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002
Citation: ZHANG Xingle, YANG Junyi, CHENG Changli, et al. Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5621-5629. doi: 10.13801/j.cnki.fhclxb.20230104.002

Direct ink writing of epoxy-based composite lattice and its strengthening and toughening mechanisms

doi: 10.13801/j.cnki.fhclxb.20230104.002
Funds:  National Natural Science Foundation of China (51905216); The Wuxi "Taihu light" Science and Technology Research Project (G20212034); Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology (FMZ202201)
  • Received Date: 2022-11-08
  • Accepted Date: 2022-12-17
  • Rev Recd Date: 2022-12-12
  • Available Online: 2023-01-05
  • Publish Date: 2023-10-15
  • Due to the high strength and lightweight, epoxy-based composites have high application value in the fields of aerospace and automotive. However, the brittle nature of epoxy resins significantly hinder theirapplication in real engineering, and it is still a great challenge to improve the strength and toughness of the epoxy-based composites. Herein, we develop an epoxy-based composite lattice composing of strengthening zones and toughening zones, which are rationally assembled into a layered structure through direct ink writing technique. The physical and chemical properties of the epoxy-based composite inks and printed filaments were characterized by rotational rheometer and optical microscope, and a universal testing machine was used to evaluate the mechanical properties of the epoxy-based composite lattice with various structural parameters. It is found that the specific strength, toughness and fracture toughness of the epoxy-based composite lattice increase by 95%, 630% and 19.1% compared to the solid composite, respectively. Based on the fracture surfaces and finite element analysis, it can be concluded that the strengthening zones ensure the structural strength, while the toughening zones are capable of effectively sharing the external deformation and preventing the crack propagation. The current research provides new ideas and theoretical basis for the design, manufacturing, and applications of structural nanocomposites with high strength and toughness.


  • loading
  • [1]
    MI X Q, LIANG N, XU H F, et al. Toughness and its mechanisms in epoxy resins[J]. Progress in Materials Science,2022,130:100977. doi: 10.1016/j.pmatsci.2022.100977
    SRINIVASAN D V, RAVICHANDRAN V, IDAPALAPATI S. Failure analysis of GFRP single lap joints tailored with a combination of tough epoxy and hyperelastic adhesives[J]. Composites Part B: Engineering,2020,200:108255. doi: 10.1016/j.compositesb.2020.108255
    HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures,2022,284:115120. doi: 10.1016/j.compstruct.2021.115120
    NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    KADHIM N, ZAMAN A, JIANG M, et al. A cast-in-place fabrication of high performance epoxy composites cured in an in-situ synthesized 3D foam of nanofibers[J]. Composites Part B: Engineering,2021,205:108495. doi: 10.1016/j.compositesb.2020.108495
    JIA J, SUN X, LIN X, et al. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J]. ACS Nano,2014,8(6):5774-5783. doi: 10.1021/nn500590g
    CHIANG Y, TUNG C C, LIN X D, et al. Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana[J]. Composite Structures,2021,262:113349. doi: 10.1016/j.compstruct.2020.113349
    SONG W, KONSTANTELLOS G, LI D, et al. Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates[J]. Composites Science and Technology,2019,184:107871. doi: 10.1016/j.compscitech.2019.107871
    GARCIA C D, SHAHAPURKAR K, DODDAMANI M, et al. Effect of arctic environment on flexural behavior of fly ash cenosphere reinforced epoxy syntactic foams[J]. Composites Part B: Engineering,2018,151:265-273. doi: 10.1016/j.compositesb.2018.06.035
    HANKS B, BERTHEL J, FRECKER M, et al. Mechanical properties of additively manufactured metal lattice structures: Data review and design interface[J]. Additive Manufacturing,2020,35:101301. doi: 10.1016/j.addma.2020.101301
    ALBERTINI F, DIRRENBERGER J, SOLLOGOUB C, et al. Experimental and computational analysis of the mechanical properties of composite auxetic lattice structures[J]. Additive Manufacturing,2021,47:102351. doi: 10.1016/j.addma.2021.102351
    MUELLER J, LEWIS J A, BERTOLDI K. Architected multimaterial lattices with thermally programmable mechanical response[J]. Advanced Functional Materials,2022,32(1):2105128. doi: 10.1002/adfm.202105128
    ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials,2020,32(17):1907142. doi: 10.1002/adma.201907142
    HUANG T, LIU W, SU C, et al. Dierct ink writing of conductive materials for emerging energy storage systems[J]. Nano Research,2022,15(7):6091-6111. doi: 10.1007/s12274-022-4200-2
    SAADI M A S R, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022,34(28):2108855. doi: 10.1002/adma.202108855
    COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2014,26(34):5930-5935. doi: 10.1002/adma.201401804
    MUELLER J, RANEY J R, SHEA K, et al. Architected lattices with high stiffness and toughness via multicore-shell 3D printing[J]. Advanced Materials,2018,30(12):1705001. doi: 10.1002/adma.201705001
    CHEN K, ZHANG L, KUANG X, et al. Dynamic photomask-assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator[J]. Advanced Functional Materials,2019,29(33):1903568. doi: 10.1002/adfm.201903568
    American Society of Testing Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—10[S]. West Conshohocken: ASTM International, 2010.
    American Society of Testing Materials. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials: ASTM D5045—99[S]. West Conshohocken: ASTM International, 1999.
    李西敏, 杨韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7):3510-3517.

    LI Ximin, YANG Tao, PENG Biyou, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica,2022,39(7):3510-3517(in Chinese).
    范晓龙, 张广成, 李建通, 等. 环氧树脂微孔材料的制备与性能[J]. 复合材料学报, 2016, 33(9):1915-1921. doi: 10.13801/j.cnki.fhclxb.20151123.003

    FAN Xiaolong, ZHANG Guangcheng, LI Jiantong, et al. Preparation and properties of microcellular epoxy resin[J]. Acta Materiae Compositae Sinica,2016,33(9):1915-1921(in Chinese). doi: 10.13801/j.cnki.fhclxb.20151123.003
    ULLAS A V, JAISWAL B. Halloysite nanotubes reinforced epoxy-glass microballoons syntactic foams[J]. Composites Communications,2020,21:100407. doi: 10.1016/j.coco.2020.100407
    GU H, ZHANG H, MA C, et al. Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy[J]. Carbon,2019,142:131-140. doi: 10.1016/j.carbon.2018.10.029
    ZHANG L, MA J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam[J]. Composites Science and Technology,2010,70:1265-1271. doi: 10.1016/j.compscitech.2010.03.016
    XU K, LI D, SHANG E, et al. A heating-assisted direct ink writing method for preparation of PDMS cellular structure with high manufacturing fidelity[J]. Polymers,2022,14(7):1323. doi: 10.3390/polym14071323
    徐菁, 李岩, 付昆昆. 仿羊角管状复合材料结构抗冲击性能[J]. 复合材料学报, 2023, 40(4):2365-2376. doi: 10.13801/j.cnki.fhclxb.20220530.006

    XU Jing, LI Yan, FU Kunkun. Impact resistance of horn-inspired tubular composite structure[J]. Acta Materiae Compositae Sinica,2023,40(4):2365-2376(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220530.006
    GAO G, LI Z, CHANG C. Numerical simulation of diametrical core deformation and fracture induced by core drilling[J]. Arabian Journal of Geosciences,2022,293:15. doi: 10.1007/s12517-022-09555-9
    薛建勋, 孙全平. 氧化锆陶瓷切削加工有限元仿真分析[J]. 中国陶瓷, 2012, 48(10):28-29. doi: 10.16521/j.cnki.issn.1001-9642.2012.10.016

    XUE Jianxun, SUN Quanping. Finite element simulation analysis of zirconia ceramic cutting[J]. China Ceramics,2012,48(10):28-29(in Chinese). doi: 10.16521/j.cnki.issn.1001-9642.2012.10.016
    American Society of Testing Materials. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (617) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint