Volume 41 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
MEI Longxiang, GUO Xiaowei, MA Li, et al. Research progress on IPMC's material compositions and actuation/sensing properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5069-5088. doi: 10.13801/j.cnki.fhclxb.20240512.001
Citation: MEI Longxiang, GUO Xiaowei, MA Li, et al. Research progress on IPMC's material compositions and actuation/sensing properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5069-5088. doi: 10.13801/j.cnki.fhclxb.20240512.001

Research progress on IPMC's material compositions and actuation/sensing properties

doi: 10.13801/j.cnki.fhclxb.20240512.001
Funds:  Changjiang Scholars and Innovation Team Development Program of Ministry of Education (IRT1187); National Natural Science Foundation of China (52275295); Central Plains Scientific and Technological Innovation Leading Talents (234200510026)
  • Received Date: 2023-12-24
  • Accepted Date: 2024-04-30
  • Rev Recd Date: 2024-04-17
  • Available Online: 2024-05-13
  • Publish Date: 2024-10-15
  • As flexible actuators and sensors, ion exchange polymer-metal composites (IPMCs) are widely used in bionic machinery, medical devices and other fields. Actuation is the main application of the IPMC, and IPMC actuators have bottlenecks such as low output power and unstable actuation. Sensing is another important application, and IPMC sensors endure some defects such as low induced voltage and large interference. For actuator, we discussed the modification techniques and driving characteristics of different polymer electrolytes, and focused on the structure-activity relationship of that, the compositions and structures the electrolytes determine their physical properties (e.g. ion exchange capacity, water uptake, mechanical property), subsequently determine their electromechanical properties (e.g. displacement, force outputs). For sensor, we discussed the optimization technologies of IPMC sensing properties (e.g. amplitude and stability of the induced voltage) from three aspects of electrode shape, electrolyte membrane structure and electrolyte ion size. We also discussed IPMC's future research.

     

  • loading
  • [1]
    BAUGHMAN R H. Playing nature's game with artificial muscles[J]. Science, 2005, 308(5718): 63-65. doi: 10.1126/science.1099010
    [2]
    LI G R, CHEN X P, ZHOU F H, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591(7848): 66-71. doi: 10.1038/s41586-020-03153-z
    [3]
    CHU H T, HU X H, WANG Z, et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles[J]. Science, 2021, 371(6528): 494-498. doi: 10.1126/science.abc4538
    [4]
    ZHANG Q M, BHARTI V, ZHAO X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science, 1998, 280(5372): 2101-2104. doi: 10.1126/science.280.5372.2101
    [5]
    PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839. doi: 10.1126/science.287.5454.836
    [6]
    HUANG J J, ZHANG X D, LIU R X, et al. Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing[J]. Nature Communications, 2023, 14(1): 1483. doi: 10.1038/s41467-023-37178-5
    [7]
    马丽, 丁井鲜, 张晓蝶, 等. MWCNT-CB/PDMS 复合电极介电弹性体驱动器的制备与性能优化[J]. 复合材料学报, 2023, 40(1): 291-299.

    MA li, DING Jingxian, ZHANG Xiaodie, et al. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 291-299(in Chinese).
    [8]
    HUANG C, ZHANG Q M, JÁKLI A. Nematic anisotropic liquid-crystal gels: Self-assembled nanocomposites with high electromechanical response[J]. Advanced Functional Materials, 2003, 13(7): 525-529. doi: 10.1002/adfm.200304322
    [9]
    MA M M, GUO L, ANDERSON D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339(6116): 186-189. doi: 10.1126/science.1230262
    [10]
    LU L H, LIU J H, HU Y, et al. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode[J]. Advanced Materials, 2012, 24(31): 4317-4321. doi: 10.1002/adma.201201320
    [11]
    BAHRAMZADEH Y, SHAHINPOOR M. Dynamic curvature sensing employing ionic-polymer-metal composite sensors[J]. Smart Materials and Structures, 2011, 20(9): 094011. doi: 10.1088/0964-1726/20/9/094011
    [12]
    ARIANO P, ACCARDO D, LOMBARDI M, et al. Polymeric materials as artificial muscles: An overview[J]. Journal of Applied Biomaterials & Functional Materials, 2015, 13(1): 1-9.
    [13]
    PELRINE R, KORNBLUH R, JOSEPH J, et al. High-field deformation of elastomeric dielectrics for actuators[J]. Materials Science and Engineering: C, 2000, 11(2): 89-100. doi: 10.1016/S0928-4931(00)00128-4
    [14]
    刘立武, 李金嵘, 吕雄飞, 等. 电活性介电弹性体的本构理论和稳定性研究进展[J]. 中国科学: 技术科学, 2015, 45(5): 450-463. doi: 10.1360/N092014-00433

    LIU Liwu, LI Jinrong, LYU Xiongfei, et al. Progress in constitutive theory and stability research of electroactive dielectric elastomers[J]. Scientia Sinica (Technologica), 2015, 45(5): 450-463(in Chinese). doi: 10.1360/N092014-00433
    [15]
    MAKSIMKIN A V, DAYYOUB T, TELYSHEV D V, et al. Electroactive polymer-based composites for artificial muscle-like actuators: A review[J]. Nanomaterials, 2022, 12(13): 2272. doi: 10.3390/nano12132272
    [16]
    O'HALLORAN A, O'MALLEY F, MCHUGH P. A review on dielectric elastomer actuators, technology, applications, and challenges[J]. Journal of Applied Physics, 2008, 104(7): 071101. doi: 10.1063/1.2981642
    [17]
    WANG H, YANG L, YANG Y N, et al. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects[J]. Chemical Engineering Journal, 2023, 469: 143976. doi: 10.1016/j.cej.2023.143976
    [18]
    ZHANG H, LIN Z H, HU Y, et al. Low-voltage driven ionic polymer-metal composite actuators: Structures, materials, and applications[J]. Advanced Science, 2023, 10(10): 2206135. doi: 10.1002/advs.202206135
    [19]
    HE Q S, YIN G X, VOKOUN D, et al. Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle[J]. Journal of Bionic Engineering, 2022, 19(2): 279-298. doi: 10.1007/s42235-022-00153-9
    [20]
    CHEN Z, UM T I, BART-SMITH H. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions[J]. Sensors and Actuators A: Physical, 2011, 168(1): 131-139. doi: 10.1016/j.sna.2011.02.034
    [21]
    SUN Q M, HAN J Z, LI H, et al. A miniature robotic turtle with target tracking and wireless charging systems based on IPMCs[J]. IEEE Access, 2020, 8: 187156-187164. doi: 10.1109/ACCESS.2020.3026333
    [22]
    CARRICO J D, HERMANS T, KIM K J, et al. 3D-printing and machine learning control of soft ionic polymer-metal composite actuators[J]. Scientific Reports, 2019, 9: 17482. doi: 10.1038/s41598-019-53570-y
    [23]
    WU Y C, YIM J K, LIANG J M, et al. Insect-scale fast moving and ultrarobust soft robot[J]. Science Robotics, 2019, 4(32): 1594. doi: 10.1126/scirobotics.aax1594
    [24]
    UMRAO S, TABASSIAN R, KIM J, et al. MXene artificial muscles based on ionically cross-linked Ti3C2T x electrode for kinetic soft robotics[J]. Science Robotics, 2019, 4(33): 7797. doi: 10.1126/scirobotics.aaw7797
    [25]
    MA S Q, ZHANG Y P, LIANG Y H, et al. High-performance ionic-polymer-metal composite: Toward large-deformation fast-response artificial muscles[J]. Advanced Functional Materials, 2019, 30(7): 1908508.
    [26]
    XU Z J, ZHU B, LIU X, et al. High-performance electroionic artificial muscles boosted by superior ion transport with Ti3C2T x MXene/cellulose nanocomposites for advanced 3D-motion actuation[J]. Chemical Engineering Journal, 2023, 477: 147246. doi: 10.1016/j.cej.2023.147246
    [27]
    ZHAO Y, XU D, SHENG J Z, et al. Biomimetic beetle-inspired flapping air vehicle actuated by ionic polymer-metal composite actuator[J]. Applied Bionics and Biomechanics, 2018, 2018: 3091579.
    [28]
    WU G, WU X J, XU Y J, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications[J]. Advanced Materials, 2019, 31(25): 1806492. doi: 10.1002/adma.201806492
    [29]
    MAHATO M, TABASSIAN R, NGUYEN V H, et al. CTF-based soft touch actuator for playing electronic piano[J]. Nature Communications, 2020, 11(1): 5358. doi: 10.1038/s41467-020-19180-3
    [30]
    MAHATO M, GARAI M, NGUYEN V H, et al. Polysulfonated covalent organic framework as active electrode host for mobile cation guests in electrochemical soft actuator[J]. Science Advances, 2023, 9(50): 9752. doi: 10.1126/sciadv.adk9752
    [31]
    WANG Y J, LIU J Y, ZHU D L, et al. Active tube-shaped actuator with embedded square rod-shaped ionic polymer-metal composites for robotic-assisted manipulation[J]. Applied Bionics and Biomechanics, 2018, 2018: 4031705.
    [32]
    WANG M, MU L, ZHANG H, et al. Flexible strain sensor with ridge-like microstructures for wearable applications[J]. Polymers for Advanced Technologies, 2021, 33(1): 96-103.
    [33]
    LIU Y, HU Y, ZHAO J J, et al. Self-powered piezoionic strain sensor toward the monitoring of human activities[J]. Small, 2016, 12(36): 5074-5080. doi: 10.1002/smll.201600553
    [34]
    LEE J H, CHEE P S, LIM E H, et al. Artificial intelligence-assisted throat sensor using ionic polymer-metal composite (IPMC) material[J]. Polymers, 2021, 13(18): 3041. doi: 10.3390/polym13183041
    [35]
    LOW J H, CHEE P S, LIM E H, et al. Kirigami-inspired self-powered pressure sensor based on shape fixation treatment in IPMC material[J]. Smart Materials and Structures, 2024, 33(2): 025029. doi: 10.1088/1361-665X/ad1def
    [36]
    MING Y, YANG Y, FU R P, et al. IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human-computer interaction[J]. Advanced Materials Technologies, 2018, 3(12): 1800257. doi: 10.1002/admt.201800257
    [37]
    CHANG L F, WANG D P, HU J J, et al. Hierarchical structure fabrication of IPMC strain sensor with high sensitivity[J]. Frontiers in Materials, 2021, 8: 748687. doi: 10.3389/fmats.2021.748687
    [38]
    ZHU Z C, BIAN C S, BAI W F, et al. Integrated fabrication process with multiple optimized factors for high power density of IPMC actuator[J]. International Journal of Smart and Nano Materials, 2022, 13(4): 643-667. doi: 10.1080/19475411.2022.2133187
    [39]
    YU M, HE Q S, DING Y, et al. Force optimization of ionic polymer metal composite actuators by an orthogonal array method[J]. Chinese Science Bulletin, 2011, 56(19): 2061-2070. doi: 10.1007/s11434-011-4509-9
    [40]
    GUO D J, WANG L, WANG X J, et al. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator[J]. Sensors and Actuators B: Chemical, 2020, 305: 127488. doi: 10.1016/j.snb.2019.127488
    [41]
    FUKUSHIMA T, ASAKA K, KOSAKA A, et al. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel[J]. Angewandte Chemie-International Edition, 2005, 44(16): 2410-2413. doi: 10.1002/anie.200462318
    [42]
    WU C H, MENG W J, YOSHIO M. Low-voltage-driven actuators using photo-cross-linked ionic columnar liquid-crystalline polymer films[J]. ACS Materials Letters, 2021, 4(1): 153-158.
    [43]
    LIU S, LIU Y, CEBECI H, et al. High electromechanical response of ionic polymer actuators with controlled-morphology aligned carbon nanotube/nafion nanocomposite electrodes[J]. Advanced Functional Materials, 2010, 20(19): 3266-3271. doi: 10.1002/adfm.201000570
    [44]
    SHAHINPOOR M, KIM K J. Experimental study of ionic polymer-metal composites in various cation forms: Actuation behavior[J]. Science and Engineering of Composite Materials, 2002, 10(6): 423-436. doi: 10.1515/SECM.2002.10.6.423
    [45]
    WANG F, ZHANG X D, MA L, et al. Facile and effective repair of Pt/Nafion IPMC actuator by dip-coating of PVP@AgNPs[J]. Nanotechnology, 2021, 32(38): 385502. doi: 10.1088/1361-6528/ac0cae
    [46]
    KWON K S, NG T N. Improving electroactive polymer actuator by tuning ionic liquid concentration[J]. Organic Electronics, 2014, 15(1): 294-298. doi: 10.1016/j.orgel.2013.11.026
    [47]
    ZHAO J J, HAN S, YANG Y, et al. Passive and space-discriminative ionic sensors based on durable nanocomposite electrodes toward sign language recognition[J]. ACS Nano, 2017, 11(9): 8590-8599. doi: 10.1021/acsnano.7b02767
    [48]
    LEE J W, YOO Y T. Anion effects in imidazolium ionic: Liquids on the performance of IPMCs[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 539-546. doi: 10.1016/j.snb.2009.01.041
    [49]
    MUST I, VUNDER V, KAASIK F, et al. Ionic liquid-based actuators working in air: The effect of ambient humidity[J]. Sensors and Actuators B: Chemical, 2014, 202: 114-122. doi: 10.1016/j.snb.2014.05.074
    [50]
    GUO D J, LIU R, LI Y K, et al. Polymer actuators of fluorene derivatives with enhanced inner channels and mechanical performance[J]. Sensors and Actuators B: Chemical, 2018, 255: 791-799. doi: 10.1016/j.snb.2017.08.119
    [51]
    HAN Y B, WANG F, LI H K, et al. Sulfonic SiO2 nanocolloid doped perfluorosulfonic acid films with enhanced water uptake and inner channel for IPMC actuators[J]. RSC Advances, 2019, 9(72): 42450-42458. doi: 10.1039/C9RA07488K
    [52]
    HE Q S, YU M, SONG L L, et al. Experimental study and model analysis of the performance of IPMC membranes with various thickness[J]. Journal of Bionic Engineering, 2011, 8(1): 77-85. doi: 10.1016/S1672-6529(11)60001-2
    [53]
    BIAN C S, ZHU Z C, BAI W F, et al. Highly efficient structure design of bending stacking actuators based on IPMC with large output force[J]. Smart Materials and Structures, 2021, 30(7): 075033. doi: 10.1088/1361-665X/ac0398
    [54]
    WANG H S, CHO J, SONG D S, et al. High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21998-22005.
    [55]
    RUAN L X, YAO X N, CHANG Y F, et al. Properties and applications of the β phase poly(vinylidene fluoride)[J]. Polymers, 2018, 10(3): 228. doi: 10.3390/polym10030228
    [56]
    KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104. doi: 10.1021/acs.chemrev.6b00159
    [57]
    HSU W Y, GIERKE T D. Ion transport and clustering in Nafion perfluorinated membranes[J]. Journal of Membrane Science, 1983, 13(3): 307-326. doi: 10.1016/S0376-7388(00)81563-X
    [58]
    ALLEN F I, COMOLLI L R, KUSOGLU A, et al. Morphology of hydrated as-cast Nafion revealed through cryo electron tomography[J]. ACS Macro Letters, 2014, 4(1): 1-5.
    [59]
    NAJI L, SAFARI M, MOAVEN S. Fabrication of SGO/Nafion-based IPMC soft actuators with sea anemone-like Pt electrodes and enhanced actuation performance[J]. Carbon, 2016, 100: 243-257. doi: 10.1016/j.carbon.2016.01.020
    [60]
    焦战士, 何青松, 郭东杰, 等. 磺酸化石墨烯掺杂的离子交换聚合物电致动器[J]. 复合材料学报, 2012, 29(5): 24-31.

    JIAO Zhanshi, HE Qingsong, GUO Dongjie, et al. Electro-actuators of sulfonated graphene hybrid ion-exchange polymer[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 24-31(in Chinese).
    [61]
    YONG J S, YOUNG K S, PARK J O, et al. Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method[J]. Smart Materials and Structures, 2015, 24(3): 030007.
    [62]
    GUO D J, FU S J, TAN W, et al. A highly porous Nafion membrane templated from polyoxometalates-based supramolecule composite for ion-exchange polymer-metal composite actuator[J]. Journal of Materials Chemistry, 2010, 20(45): 10159-10168. doi: 10.1039/c0jm01161d
    [63]
    ZHAO D X, RU J, WANG T, et al. Performance enhancement of ionic polymer-metal composite actuators with polyethylene oxide[J]. Polymers, 2021, 14(1): 80. doi: 10.3390/polym14010080
    [64]
    GUO D J, DING H T, WEI H J, et al. Hybrids perfluorosulfonic acid ionomer and silicon oxide membrane for application in ion-exchange polymer-metal composite actuators[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 3061-3070. doi: 10.1007/s11431-009-0280-4
    [65]
    LEE J W, YOO Y T, LEE J Y. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1266-1271.
    [66]
    NEMAT-NASSER S, WU Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics, 2003, 93(9): 5255-5267. doi: 10.1063/1.1563300
    [67]
    ZHU Z C, CHANG L F, ASAKA K, et al. Comparative experimental investigation on the actuation mechanisms of ionic polymer-metal composites with different backbones and water contents[J]. Journal of Applied Physics, 2014, 115(12): 124903. doi: 10.1063/1.4869537
    [68]
    LU LH, LIU J H, HU Y, et al. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design[J]. Advanced Materials, 2012, 25(9): 1270-1274.
    [69]
    LEE J Y, WANG H S, YOON B R, et al. Radiation-grafted fluoropolymers soaked with imidazolium-based ionic liquids for high-performance ionic polymer-metal composite actuators[J]. Macromolecular Rapid Communications, 2010, 31(21): 1897-1902. doi: 10.1002/marc.201000261
    [70]
    MEHRAEEN S, SADEGHI S, CEBECI F Ç, et al. Polyvinylidene fluoride grafted poly(styrene sulfonic acid) as ionic polymer-metal composite actuator[J]. Sensors and Actuators A: Physical, 2018, 279: 157-167. doi: 10.1016/j.sna.2018.05.038
    [71]
    NASEF M M, SAIDI H, DAHLAN K Z M. Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell[J]. Journal of Membrane Science, 2009, 339(1-2): 115-119. doi: 10.1016/j.memsci.2009.04.037
    [72]
    QIU X P, LI W Q, ZHANG S C, et al. Microstructure and character of the PVDF-g-PSSA membrane prepared by solution grafting[J]. Journal of the Electrochemical Society, 2003, 150(7): 917-921. doi: 10.1149/1.1579033
    [73]
    PANWAR V, CHA K, PARK J O, et al. High actuation response of PVDF/PVP/PSSA based ionic polymer metal composites actuator[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 460-470. doi: 10.1016/j.snb.2011.10.062
    [74]
    JEON J H, KANG S P, LEE S, et al. Novel biomimetic actuator based on SPEEK and PVDF[J]. Sensors and Actuators B: Chemical, 2009, 143(1): 357-364. doi: 10.1016/j.snb.2009.09.020
    [75]
    LU J, KIM S G, LEE S, et al. A biomimetic actuator based on an ionic networking membrane of poly(styrene-alt-maleimide)-incorporated poly(vinylidene fluoride)[J]. Advanced Functional Materials, 2008, 18(8): 1290-1298. doi: 10.1002/adfm.200701133
    [76]
    GUO D J, HAN Y B, HUANG J J, et al. Hydrophilic poly (vinylidene fluoride) film with enhanced inner channels for both water- and ionic liquid-driven ion-exchange polymer metal composite actuators[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2386-2397.
    [77]
    LUQMAN M, LEE J W, MOON K K, et al. Sulfonated polystyrene-based ionic polymer-metal composite (IPMC) actuator[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 49-55. doi: 10.1016/j.jiec.2010.10.008
    [78]
    WANG X L, OH I K, CHENG T H. Electro-active polymer actuators employing sulfonated poly(styrene-ran-ethylene) as ionic membranes[J]. Polymer International, 2010, 59(3): 305-312. doi: 10.1002/pi.2775
    [79]
    WANG X L, OH I K, KIM J B. Enhanced electromechanical performance of carbon nano-fiber reinforced sulfonated poly(styrene-b-[ethylene/butylene]-b-styrene) actuator[J]. Composites Science and Technology, 2009, 69(13): 2098-2101. doi: 10.1016/j.compscitech.2008.08.023
    [80]
    NGUYEN K T, KO S Y, PARK J O, et al. Terrestrial walking robot with 2DoF ionic polymer-metal composite (IPMC) legs[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2962-2972. doi: 10.1109/TMECH.2015.2419820
    [81]
    TANG Y J, XUE Z G, ZHOU X P, et al. Novel sulfonated polysulfone ion exchange membranes for ionic polymer-metal composite actuators[J]. Sensors and Actuators B: Chemical, 2014, 202: 1164-1174. doi: 10.1016/j.snb.2014.06.071
    [82]
    KIM S S, JEON J H, KEE C D, et al. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS[J]. Smart Materials and Structures, 2013, 22(8): 085026. doi: 10.1088/0964-1726/22/8/085026
    [83]
    WANG F, KIM S S, KEE C D, et al. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs[J]. Smart Materials and Structures, 2014, 23(7): 074006. doi: 10.1088/0964-1726/23/7/074006
    [84]
    JEON J H, CHEEDARALA R K, KEE C D, et al. Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness[J]. Advanced Functional Materials, 2013, 23(48): 6007-6018. doi: 10.1002/adfm.201203550
    [85]
    ROUAIX S, CAUSSERAND C, AIMAR P. Experimental study of the effects of hypochlorite on polysulfone membrane properties[J]. Journal of Membrane Science, 2006, 277(1-2): 137-147. doi: 10.1016/j.memsci.2005.10.040
    [86]
    TANG Y J, XUE Z G, XIE X L, et al. Ionic polymer-metal composite actuator based on sulfonated poly(ether ether ketone) with different degrees of sulfonation[J]. Sensors and Actuators A: Physical, 2016, 238: 167-176. doi: 10.1016/j.sna.2015.12.015
    [87]
    CAO J L, ZHANG Z, YE L, et al. Construction of poly(vinyl alcohol)-based ionogels with continuous ion transport channels enables high performance ionic soft actuators[J]. Journal of Materials Chemistry A, 2023, 11(37): 19981-19995. doi: 10.1039/D3TA03726F
    [88]
    LEE J W, KIM J H, GOO N S, et al. Ion-conductive poly (vinyl alcohol)-based IPMCs[J]. Journal of Bionic Engineering, 2010, 7(1): 19-28. doi: 10.1016/S1672-6529(09)60194-3
    [89]
    BASS P, ZHANG L, TU M B, et al. Enhancement of biodegradable poly(ethylene oxide) ionic-polymer metallic composite actuators with nanocrystalline cellulose fillers[J]. Actuators, 2018, 7(4): 72. doi: 10.3390/act7040072
    [90]
    PARK J H, HAN M J, SONG D S, et al. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion- exchange membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22847-22854.
    [91]
    KHAN A, INAMUDDIN, JAIN R K, et al. Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator[J]. Sensors and Actuators A: Physical, 2018, 280: 114-124. doi: 10.1016/j.sna.2018.07.027
    [92]
    LEHTINEN T, SUNDHOLM G, HOLMBERG S, et al. Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells[J]. Electrochimica Acta, 1998, 43(12-13): 1881-1890. doi: 10.1016/S0013-4686(97)10005-6
    [93]
    WANG X L, OH I K, XU L. Electro-active artificial muscle based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)[J]. Sensors and Actuators B: Chemical, 2010, 145: 635-642. doi: 10.1016/j.snb.2010.01.001
    [94]
    JO C, PUGALB D, OHA I K, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications[J]. Progress in Polymer Science, 2013, 38(7): 1037-1066. doi: 10.1016/j.progpolymsci.2013.04.003
    [95]
    ASAKA K, FUJIWARA N, OGURO K, et al. State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators[J]. Journal of Electroanalytical Chemistry, 2001, 505(1-2): 24-32. doi: 10.1016/S0022-0728(01)00445-4
    [96]
    DUNCAN A J, LEO D J, LONG T E. Beyond Nafion: Charged macromolecules tailored for performance as ionic polymer transducers[J]. Macromolecules, 2008, 41(21): 7765-7775. doi: 10.1021/ma800956v
    [97]
    KIM S S, JEON J H, KIM H I, et al. High-fidelity bioelectronic muscular actuator based on graphene-mediated and TEMPO-oxidized bacterial cellulose[J]. Advanced Functional Materials, 2015, 25(23): 3560-3570. doi: 10.1002/adfm.201500673
    [98]
    SHAHINPOOR M, BAR-COHEN Y, SIMPSON J O, et al. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review[J]. Smart Materials and Structures, 1998, 7: 15-30. doi: 10.1088/0964-1726/7/6/001
    [99]
    DOBASHI Y, YAO D, PETEL Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507. doi: 10.1126/science.aaw1974
    [100]
    LU C, CHEN X, ZHANG X H, et al. Highly sensitive artificial skin perception enabled by a bio-inspired interface[J]. ACS Sensors, 2023, 8(4): 1624-1629. doi: 10.1021/acssensors.2c02743
    [101]
    ZHU Z C, HORIUCHI T, KRUUSAMÄE K, et al. The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations[J]. Smart Materials and Structures, 2016, 25(5): 055024. doi: 10.1088/0964-1726/25/5/055024
    [102]
    LU C, LIAO X B, FANG D N, et al. Highly sensitive ultrastable electrochemical sensor enabled by proton-coupled electron transfer[J]. Nano Letters, 2021, 21(12): 5369-5376. doi: 10.1021/acs.nanolett.1c01692
    [103]
    LU C, YU X P, CHEN Y X, et al. Giant piezoionic effect of ultrathin MXene nanosheets toward highly-sensitive sleep apnea diagnosis[J]. Chemical Engineering Journal, 2023, 463: 142523. doi: 10.1016/j.cej.2023.142523
    [104]
    LI L, PAN J L, CHANG L F, et al. A MXene heterostructure-based piezoionic sensor for wearable sensing applications[J]. Chemical Engineering Journal, 2024, 482: 148988. doi: 10.1016/j.cej.2024.148988
    [105]
    ZHOU Y H, WANG Q, ZHANG X Y, et al. Piezoionic transfer effect in topological borophene-bismuthene derivative micro-leaves for robust supercapacitive electronic skins[J]. Nano Energy, 2022, 104: 107970. doi: 10.1016/j.nanoen.2022.107970
    [106]
    HAN S, ZHAN J J, WANG D X, et al. Bionic ion channel and single-ion conductor design for artificial skin sensors[J]. Journal of Materials Chemistry B, 2017, 5(34): 7126-7132. doi: 10.1039/C7TB01760J
    [107]
    LU X, CHEN Y, ZHANG Y H, et al. Piezoionic high performance hydrogel generator and active protein absorber via microscopic porosity and phase blending[J]. Advanced Materials, 2024, 36(2): 07875.
    [108]
    LI F, CAI X Q, LIU G K, et al. Piezoionic SnSe nanosheets-double network hydrogel for self-powered strain sensing and energy harvesting[J]. Advanced Functional Materials, 2023, 33(32): 00701.
    [109]
    LU C, CHEN Y X, YU X P, et al. Graphene-enhanced double-network ionogel electrolytes for energy storage and strain sensing[J]. Polymer Bulletin, 2023, 80: 12895-12905.
    [110]
    LIU D S, RYU H J, KHAN U, et al. Piezoionic-powered graphene strain sensor based on solid polymer electrolyte[J]. Nano Energy, 2021, 81: 105610. doi: 10.1016/j.nanoen.2020.105610
    [111]
    HE Q S, ZHONG Q Y, SUN Z, et al. Highly stretchable, repeatable, and easy-to-prepare ionogel based on polyvinyl chloride for wearable strain sensors[J]. Nano Energy, 2023, 113: 108535. doi: 10.1016/j.nanoen.2023.108535
    [112]
    BOAHEN E K, PAN B H, KWEON H, et al. Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics[J]. Nature Communications, 2022, 13(1): 7699. doi: 10.1038/s41467-022-35434-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (182) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return