Citation: | WANG Fuji, GE Lianheng, HU Xiaohang, et al. Longitudinal-torsional ultrasonic vibration-assisted milling performance and process optimization of CF/PEEK unidirectional plates[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 5027-5043. doi: 10.13801/j.cnki.fhclxb.20240724.001 |
[1] |
逄显娟, 岳世伟, 黄素玲, 等. 碳纤维/聚醚醚酮(CF/PEEK)复合材料摩擦磨损性能及抗摩擦静电特性研究[J]. 中国机械工程, 2023, 34(3): 277-286. doi: 10.3969/j.issn.1004-132X.2023.03.003
PANG Xianjuan, YUE Shiwei, HUANG Suling, et al. Tribological properties and anti-friction electrostatic properties of CF/PEEK composites[J]. Chinese Journal of Mechanical Engineering, 2023, 34(3): 277-286(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.03.003
|
[2] |
AAMIR M, TOLOUEI-RAD M, GIASIN K, et al. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5-6): 2289-2308. doi: 10.1007/s00170-019-04348-z
|
[3] |
ALTIN KARATAŞ M, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326. doi: 10.1016/j.dt.2018.02.001
|
[4] |
LEE J, LEE C, KIM B, et al. Design of prepreg compression molding for manufacturing of CFRTP B-pillar reinforcement with equivalent mechanical properties to existing steel part[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(3): 545-556. doi: 10.1007/s12541-019-00265-z
|
[5] |
YAO S, JIN F, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering, 2018, 142: 241-250. doi: 10.1016/j.compositesb.2017.12.007
|
[6] |
LIM S J, CHEON J, KIM M. Effect of laser surface treatments on a thermoplastic PA6/carbon composite to enhance the bonding strength[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105989. doi: 10.1016/j.compositesa.2020.105989
|
[7] |
STEWART R. Thermoplastic composites—Recyclable and fast to process[J]. Reinforced Plastics, 2011, 55(3): 22-28. doi: 10.1016/S0034-3617(11)70073-X
|
[8] |
GUO R, LI C, NIU Y, et al. The fatigue performances of carbon fiber reinforced polymer composites—A review[J]. Journal of Materials Research and Technology, 2022, 21: 4773-4789. doi: 10.1016/j.jmrt.2022.11.053
|
[9] |
GENG D, LIU Y, SHAO Z, et al. Delamination formation, evaluation and suppression during drilling of composite laminates: A review[J]. Composite Structures, 2019, 216: 168-186. doi: 10.1016/j.compstruct.2019.02.099
|
[10] |
DU Y, YANG T, LIU C. Comparative study on machining performance of conventional and ultrasonic-assisted drilling of carbon fiber-reinforced polyetheretherketone composite[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(10): 540. doi: 10.1007/s40430-023-04460-y
|
[11] |
CAO H, LIU L, WU B, et al. Process optimization of high-speed dry milling UD-CF/PEEK laminates using GA-BP neural network[J]. Composites Part B: Engineering, 2021, 221: 109034. doi: 10.1016/j.compositesb.2021.109034
|
[12] |
LIU L, QU D, WANG J, et al. Thermal-field analytical modeling of machined surface layer in high-speed-dry milling UD-CF/PEEK considering thermal anisotropy and nonlinear thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107864. doi: 10.1016/j.compositesa.2023.107864
|
[13] |
SONG Y, CAO H, WANG Q, et al. Surface roughness prediction model in high-speed dry milling CFRP considering carbon fiber distribution[J]. Composites Part B: Engineering, 2022, 245: 110230. doi: 10.1016/j.compositesb.2022.110230
|
[14] |
YAN X, ZHAO H, WEN Z, et al. Investigation on grinding temperature characteristics of CF/PEEK and material removal mechanism under temperature treatments[J]. Composites Science and Technology, 2024, 252: 110621. doi: 10.1016/j.compscitech.2024.110621
|
[15] |
WANG H, NING F, LI Y, et al. Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP[J]. Ultrasonics, 2019, 97: 19-28. doi: 10.1016/j.ultras.2019.04.004
|
[16] |
WANG H, HU Y, CONG W, et al. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration[J]. International Journal of Mechanical Sciences, 2019, 155: 450-460. doi: 10.1016/j.ijmecsci.2019.03.009
|
[17] |
WANG H, HU Y, CONG W, et al. Rotary ultrasonic machining of carbon fiber–reinforced plastic composites: Effects of ultrasonic frequency[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(9-12): 3759-3772. doi: 10.1007/s00170-019-04084-4
|
[18] |
LOTFI M, AMINI S. Experimental and numerical study of ultrasonically-assisted drilling[J]. Ultrasonics, 2017, 75: 185-193. doi: 10.1016/j.ultras.2016.11.009
|
[19] |
GENG D, LIU Y, SHAO Z, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B: Engineering, 2020, 183: 107698. doi: 10.1016/j.compositesb.2019.107698
|
[20] |
LIU J, CHEN G, REN C, et al. Effects of axial and longitudinal-torsional vibration on fiber removal in ultrasonic vibration helical milling of CFRP composites[J]. Journal of Manufacturing Processes, 2020, 58: 868-883. doi: 10.1016/j.jmapro.2020.08.071
|
[21] |
HALIM N F H A, ASCROFT H, BARNES S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP)[J]. Procedia Engineering, 2017, 184: 185-191.
|
[22] |
魏学涛, 岳彩旭, 刘献礼, 等. 轴向超声振动辅助铣削力的建模与实验研究[J]. 机械科学与技术, 2021, 40(12): 1820-1828.
WEI Xuetao, YUE Caixu, LIU Xianli, et al. Modeling and experimental study on axial ultrasonic vibration-assisted milling force[J]. Mechanical Science and Technology for Aerospace ENGineerin, 2021, 40(12): 1820-1828(in Chinese).
|
[23] |
LIU S, SUN Y, DU Y, et al. Investigating the material removal mechanism and cutting performance in ultrasonic vibration-assisted milling of carbon fibre reinforced thermoplastic[J]. Materials Research Express, 2023, 10(9): 095603. doi: 10.1088/2053-1591/acfb5f
|
[24] |
UCAR M, WANG Y. End-milling machinability of a carbon fiber reinforced laminated composite[J]. Journal of Advanced Materials, 2005, 37(4): 46-52.
|
[25] |
BAI Y, JIA Z, FU R, et al. Mechanical model for predicting thrust force with tool wear effects in drilling of unidirectional CFRP[J]. Composite Structures, 2021, 262: 113061.
|
[26] |
KUMAR D, GURURAJA S. Machining damage and surface integrity evaluation during milling of UDCFRP laminates: Dry vs. cryogenic[J]. Composite Structures, 2020, 247: 112504. doi: 10.1016/j.compstruct.2020.112504
|
[27] |
CHEN X, JIANG B, ZHOU Z. Optimization of CFRP pultrusion process with NSGA-II and ANN[J]. Advanced Materials Research, 2012(538-541): 2705-2711.
|
[28] |
LI J, ZUO W, E J Q, et al. Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II[J]. Energy, 2022, 242: 123039. doi: 10.1016/j.energy.2021.123039
|
[29] |
WANG Q, JIA X. Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN, NSGA-II and fuzzy C-means[J]. Composite Structures, 2020, 235: 111803. doi: 10.1016/j.compstruct.2019.111803
|