Citation: | SHI Shuqing, MAO Qianjin, CHEN Jiayi, et al. Multiscale interfacial characterization and self-healing effect of water-absorbing microcapsules/cement-based materials[J]. Acta Materiae Compositae Sinica, 2025, 42(3): 1578-1587. DOI: 10.13801/j.cnki.fhclxb.20240626.003 |
Aiming at the problem of weak interfacial binding force between the absorbent microcapsule (SA) with calcium alginate as shell and epoxy resin E-51 as core and cement matrix, silane coupling agent was used to modify the surface of SA microcapsule to improve its interfacial binding with cement matrix, so as to improve the self-healing effect. By means of SEM, microhardness and drawing test, the interface bonding was analyzed from micro, mesoscopic to macro scale, and the self-healing effect was evaluated by the recovery rate of compressive strength and water permeability resistance of the mortar specimen after damage repair. The results show that the interface bond between SA and cement matrix is closer after modification with coupling agent KH792, the microhardness at the interface is increased by 159%, and the interface bond strength is increased by 67%. For the mortar mixed with 4wt% (cement mass) SA, the compressive strength recovery rate after load damage is 103%, and the seepage resistance recovery rate after water pressure damage is 118%. The surface modification of silane coupling agent significantly improved the interface bonding between SA and cement matrix, and the self-healing effect of cement-based materials was enhanced.
[1] |
房国豪, 陈锦妹, 王琰帅, 等. 微胶囊自修复混凝土研究进展[J]. 硅酸盐学报, 2023, 51(9): 2423-2432.
FANG Guohao, CHEN Jinmei, WANG Yanshuai, et al. Research development on microencapsulated self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2423-2432(in Chinese).
|
[2] |
YANG Z, HOLLAR J, HE X, et al. A self-healing cementitious composite using oil core/silica gel shell microcapsules[J]. Cement & Concrete Composites, 2011, 33(4): 506-512.
|
[3] |
WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Correction: Autonomic healing of polymer composites[J]. Nature, 2002, 415: 817. DOI: 10.1038/415817a
|
[4] |
XUE C, LI W, LI J, et al. A review study on encapsulation-based self-healing for cementitious materials[J]. Structural Concrete, 2019, 20(1): 198-212. DOI: 10.1002/suco.201800177
|
[5] |
MA Y, LIU J, ZHANG Y, et al. Mechanical behavior and self-healing mechanism of polyurea-based double-walled microcapsule/epoxy composite films[J]. Progress in Organic Coatings, 2021, 157: 106283. DOI: 10.1016/j.porgcoat.2021.106283
|
[6] |
WANG X F, HAN R, HAN T L, et al. Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory[J]. Materials Chemistry and Physics, 2018, 215: 346-354. DOI: 10.1016/j.matchemphys.2018.05.041
|
[7] |
LYU L, ZHANG H, SCHLANGEN E, et al. Experimental and numerical study of crack behaviour for capsule-based self-healing cementitious materials[J]. Construction and Building Materials, 2017, 156: 219-229. DOI: 10.1016/j.conbuildmat.2017.08.157
|
[8] |
MA X, YUAN Q, LIU J, et al. Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio[J]. Construction and Building Materials, 2019, 195: 66-74. DOI: 10.1016/j.conbuildmat.2018.11.050
|
[9] |
MAULUDIN L M, ZHANG X, RABCZUK T. Computational modeling of fracture in encapsulation-based self-healing concrete using cohesive elements[J]. Composite Structures, 2018, 196: 63-75.
|
[10] |
LYU L, GUO P, XING F, et al. Trigger efficiency enhancement of polymeric microcapsules for self-healing cementitious materials[J]. Construction and Building Materials, 2020, 235: 117443. DOI: 10.1016/j.conbuildmat.2019.117443
|
[11] |
张璐, 毛倩瑾, 伍文文, 等. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. DOI: 10.3969/j.issn.1001-1625.2022.8.gsytb202208008
ZHANG Lu, MAO Qianjin, WU Wenwen, et al. Interface modification of water absorbent microcapsules to improve impermeability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 41(8): 2663-2671(in Chinese). DOI: 10.3969/j.issn.1001-1625.2022.8.gsytb202208008
|
[12] |
SOUZA L, AI-TABBAA A. Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials[J]. Construction and Building Materials, 2018, 184: 713-722. DOI: 10.1016/j.conbuildmat.2018.07.005
|
[13] |
MAO Q J, CHEN J Y, QI W J, et al. Improving self-healing and shrinkage reduction of cementitious materials using water absorbing polymer microcapsules[J]. Materials, 2022, 15(3): 847.
|
[14] |
MAO Q J, CHEN J Y, WU W W, et al. Multiple self-healing effects of water-absorbing microcapsules in cementitious materials[J]. Polymers, 2023, 15(2): 428.
|
[15] |
郎风超, 朱静, 李云芳, 等. SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能[J]. 复合材料学报, 2020, 37(6): 1383-1389.
LANG Fengchao, ZHU Jing, LI Yunfang, et al. Characterization of interfacial meso-mechanical properties of composites using fiber push-out under SEM combing with electron beam moiré method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1383-1389(in Chinese).
|
[16] |
戚亮亮, 程乐乐, 余木火, 等. Ⅳ型高压储氢气瓶用碳纤维复合材料界面表征与分析[J]. 合成纤维, 2023, 52(4): 28-32.
QI Liangliang, CHENG Lele, YU Muhuo, et al. Interface characterization and analysis of carbon fiber composites for type IV high-pressure hydrogen storage cylinder[J]. Synthetic Fiber in China, 2023, 52(4): 28-32(in Chinese).
|
[17] |
JIN X, WU G. Quasi-in-situ analysis of adhesion failure at reduced iron/substrate interface of advanced high strength steel[J]. Materials Characterization, 2023, 197: 112712. DOI: 10.1016/j.matchar.2023.112712
|
[18] |
徐晶, 王彬彬. 浆/集界面纳米改性的多尺度力学表征[J]. 电子显微学报, 2015, 34(6): 492-497. DOI: 10.3969/j.issn.1000-6281.2015.06.008
XU Jing, WANG Binbin. Multi-scale mechanical characterization of nanoscale modification of slurry/collector interface[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(6): 492-497(in Chinese). DOI: 10.3969/j.issn.1000-6281.2015.06.008
|
[19] |
邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征: 理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870. DOI: 10.11896/cldb.201905019
QIU Bo, XING Shuming, DONG Qi. Characterization of interfacial bonding strength of particles reinforced metal matrix composites: Theory model, finite element simulation and experimental test[J]. Materials Reports, 2019, 33(5): 862-870(in Chinese). DOI: 10.11896/cldb.201905019
|
[20] |
SHI C, WANG X, ZHAO Y, et al. Bond strength and interface characteristics between magnesium phosphate cement mortar and ordinary Portland cement concrete in a frigid environment[J]. International Journal of Pavement Engineering, 2024, 25(1): 2318610. DOI: 10.1080/10298436.2024.2318610
|
[21] |
中华人民共和国住房和城乡建设部. 挤塑聚苯板(XPS)薄抹灰外墙外保温系统材料: GB/T 30595—2014[S]. 北京: 中国标准出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Extruded polystyrene board (XPS) thin plaster external insulation system material: GB/T 30595—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
|
[22] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 干混砂浆物理性能试验方法: GB/T 29756—2013[S]. 北京: 中国标准出版社, 2013.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for physical properties of dry mixed mortar: GB/T 29756—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
|
[23] |
中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of test method for basic properties of building mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
|
[24] |
LLOYD D J, GALLERNEAULT M, WAGSTAFF R B. The deformation of clad aluminum sheet produced by direct chill casting[J]. Metallurgical and Materials Transactions A, 2010, 41: 2093-2103.
|
[25] |
ZHANG Q, GAO F, ZHANG C, et al. Enhanced dielectric tunability of Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites via interface modification by silane coupling agent[J]. Composites Science and Technology, 2016, 129: 93-100. DOI: 10.1016/j.compscitech.2016.04.016
|
[26] |
LI H, WANG R, HU H, et al. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent[J]. Applied Surface Science, 2008, 255(5): 1894-1900. DOI: 10.1016/j.apsusc.2008.06.170
|