Citation: | CHANG Weiwei, RONG Weifeng, PENG Hui. Research progress of carbon material in the stereocomplex crystallization of poly(lactic acid)[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 1804-1815. DOI: 10.13801/j.cnki.fhclxb.20240626.001 |
Poly(lactic acid) (PLA) is a biodegradable and biocompatible polymer. Because of its good mechanical properties and outstanding thermoplasticity, it has excellent potential for substitution of petroleum-based polymers. However, the slow crystallization rate, low crystallization and poor heat resistance of PLA, seriously restrict its wide application and development. It has been established that formation of stereocomplex (SC) crystallites is an effective way to improve the various performance of PLA. Nevertheless, SC crystallites are difficult to controllable formation in the actual production and application of PLA. As a green nucleating agent, carbon material could adjust the SC crystallization. This paper describes the crystal structures of homocrystallites (HC) and SC formed by PLA, sorts out the researches about carbon additives on the effect of SC crystallization and discusses the possible mechanism for carbon additives promoting SC crystallization of PLA. Finally, the current challenges are pointed out and the future research directions are prospected.
With the increasing shortage of petrochemical resources and the continuous deterioration of the ecological environment, it is urgent to develop environmentally friendly high-molecular materials. Among the many green polymer materials that have been developed, polylactic acid (PLA) is one of the products with the outstanding performance, and the intriguing application potential. However, compared to traditional plastics, PLA has some defects, such as poor crystallization performance and slow crystallization rate, which further leads to poor physical properties. Therefore, improving the crystallization performance of PLA has important scientific significance and practical value for its application.
The two enantiomorphic isomers of PLA: Poly (L-lactide) (PLLA) and d Poly (D-lactide) (PDLA), equally mixed could form stereocomplex crystallites (SC), which has superior physical and chemical properties compared to the homocrystals (HC) formed by the individually enantiomorphic chain. However, it is difficult to control the formation of SC in actual production of PLA. Carbon materials can be added as heterogeneous nucleating agents to PLA matrix, which can selectively manipulate the generation of SC in PLA. It not only improves the physical and mechanical properties of PLA, but also meet the requirements of people pursuing natural, green, and environmentally friendly products. This paper analyzes the crystal structures of PLA SC and HC crystals, and then classifies and reviews the research progress of using carbon materials as nucleating agents to promote SC crystallization and improve performance of PLA, proposes the possible mechanisms, finally puts forward insights into the challenges and future research directions.
The addition of carbon materials can effectively promote the interactions of the two PLA enantiomers. The unique surface structure of carbon materials provides a large active surface for the accumulation of PLA molecular chains, and induces the ordered arrangement of PLLA and PDLA chains to form crystalline structure of SC. Therefore, it plays an important role in improving the crystallinity of PLA and regulating the crystallization form of PLAConclusions: As a green nucleating agent, carbon material has shown remarkable effect on selectively promoting the SC crystallization of PLA and improving its physical properties. However, at present, the research on carbon materials as PLA nucleating agents is still in the stage of experimental exploration. In order to accelerate its practical application and popularization, efforts can be made in the following aspects: (1) to improve the dispersion of carbon materials in PLA matrix, while maintaining the inherent properties of carbon materials; (2) In-depth study of the interaction mechanism between carbon materials and PLA; (3) Establish the controllable induction mechanism between the structure of carbon material additive, PLA crystallization behavior and thermodynamic and mechanical properties, so as to obtain the PLA-carbon composite with the excellent performances.
[1] |
IKADA Y, JAMSHIDI K, TSUJI H, et al. Stereo complex formation between enantiomeric poly(lactides)[J]. Macromolecules, 1987, 20(4): 904-906. DOI: 10.1021/ma00170a034
|
[2] |
RAEF M, SARASUA J R, ETXEBERRIA A, et al. Stereocomplexation: From molecular structure to functionality of advanced polylactide systems[J]. Polymer, 2023, 280: 126066. DOI: 10.1016/j.polymer.2023.126066
|
[3] |
景占鑫, 匡倩, 李广瑞, 等. 立构复合调控聚乳酸基材料性能及其应用研究进展[J]. 工程塑料应用, 2023, 51(12): 156-164. DOI: 10.3969/j.issn.1001-3539.2023.12.025
JING Zhanxin, KUANG Qian, LI Guangrui, et al. Research progress on the properties and applications of poly(lactide)-based materials adjusted by stereocomplexation[J]. Engineering Plastics Application, 2023, 51(12): 156-164(in Chinese). DOI: 10.3969/j.issn.1001-3539.2023.12.025
|
[4] |
PAN P, HAN L, BAO J, et al. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: Molecular weight effects[J]. The Journal of Physical Chemistry B, 2015, 119(21): 6462-6470. DOI: 10.1021/acs.jpcb.5b03546
|
[5] |
BAO J, XUE X, LI K, et al. Competing stereocomplexation and homocrystallization of poly(L-lactic acid)/poly(D-lactic acid) racemic mixture: Effects of miscible blending with other polymers[J]. The Journal of Physical Chemistry B, 2017, 121(28): 6934-6943. DOI: 10.1021/acs.jpcb.7b03287
|
[6] |
SUN C, ZHENG Y, XU S, et al. Role of chain entanglements in the stereocomplex crystallization between poly(lactic acid) enantiomers[J]. ACS Macro Letters, 2021, 10(8): 1023-1028. DOI: 10.1021/acsmacrolett.1c00394
|
[7] |
DEETUAM C, SAMTHONG C, CHOKSRIWICHIT S, et al. Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: Effects of talc, calcium carbonate, cassava starch and silane coupling agents[J]. Iranian Polymer Journal, 2020, 29(2): 103-116. DOI: 10.1007/s13726-019-00778-4
|
[8] |
HAN L, PAN P, SHAN G, et al. Stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) racemic blends promoted by a selective nucleator[J]. Polymer, 2015, 63: 144-153. DOI: 10.1016/j.polymer.2015.02.053
|
[9] |
ZOU G X, JIAO Q W, ZHANG X, et al. Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent[J]. Journal of Applied Polymer Science, 2015, 132(5): 41367. DOI: 10.1002/app.41367
|
[10] |
张靖倩, 曾广胜, 彭军, 等. 酰肼成核剂对聚乳酸结晶和力学性能的影响[J]. 材料科学与工程学报, 2024, 42(3): 427-434.
ZHANG Jingqian, ZENG Guangsheng, PENG Jun, et al. Effects of hydrazide nucleating agents on crystallization and mechanical properties of polylactic acid[J]. Journal of Materials Science & Engineering, 2024, 42(3): 427-434(in Chinese).
|
[11] |
D'AMBROSIO R M, MICHELL R M, MINCHEVA R, et al. Crystallization and stereocomplexation of PLA-mb-PBS multi-block copolymers[J]. Polymers, 2018, 10(1): 8.
|
[12] |
吴晗, 杨顺燚, 蒋妮, 等. 聚苯乙烯嵌段对左旋聚乳酸/聚苯乙烯-b-右旋聚乳酸立构复合晶结晶行为的调控[J]. 高分子学报, 2023, 54(5): 631-642.
WU Han, YANG Shunyi, JIANG Ni, et al. Regulation of polystyrene blocks on stereocomplex crystallization behavior of poly(L-lactic acid)/polystyrene-b-poly(D-lactic acid) blends[J]. Acta Polymerica Sinica, 2023, 54(5): 631-642(in Chinese).
|
[13] |
ZHAO S, ZHANG X, NI Y, et al. Anisotropic mechanical response of a 2D covalently bound fullerene lattice[J]. Carbon, 2023, 202: 118-124. DOI: 10.1016/j.carbon.2022.11.005
|
[14] |
张志远, 柏家奇, 饶昌铝, 等. 石墨烯导热测试方法、影响因素及其应用研究进展[J]. 复合材料学报, 2024, 41(11): 5852-5875.
ZHANG Zhiyuan, BAI Jiaqi, RAO Changlyu, et al. Research progress on testing methods, influencing factors and applications of graphene thermal conductivity[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5852-5875(in Chinese).
|
[15] |
HOOGSTEEN W, POSTEMA A R, PENNINGS A J, et al. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers[J]. Macromolecules, 1990, 23(2): 634-642. DOI: 10.1021/ma00204a041
|
[16] |
SASAKI S, ASAKURA T. Helix distortion and crystal structure of the α-form of poly(L-lactide)[J]. Macromolecules, 2003, 36(22): 8385-8390.
|
[17] |
HUANG S, LI H, JIANG S. Pressure induced crystallization and in situ simultaneous SAXS/WAXS investigations on structure transitions[J]. CrystEngComm, 2020, 22(28): 4748-4757.
|
[18] |
叶建民, 朱文利, 黄凰, 等. 聚乳酸在超临界二氧化碳下的结晶及对泡孔结构的影响[J]. 塑料工业, 2016, 44(10): 64-68, 75. DOI: 10.3969/j.issn.1005-5770.2016.10.017
YE Jianmin, ZHU Wenli, HUANG Huang, et al. Crystallization of polylactide under supercritical carbon dioxide and its effects on cell structure[J]. China Plastics Industry, 2016, 44(10): 64-68, 75(in Chinese). DOI: 10.3969/j.issn.1005-5770.2016.10.017
|
[19] |
RU J F, YANG S G, ZHOU D, et al. Dominant β-form of poly(L-lactic acid) obtained directly from melt under shear and pressure fields [J]. Macromolecules, 2016, 49(10): 3826-3837. DOI: 10.1021/acs.macromol.6b00595
|
[20] |
CARTIER L, OKIHARA T, IKADA Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides[J]. Polymer, 2000, 41(25): 8909-8919. DOI: 10.1016/S0032-3861(00)00234-2
|
[21] |
OKIHARA T, TSUJI M, KAWAGUCHI A, et al. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide)[J]. Journal of Macromolecular Science, Part B, 1991, 30(1-2): 119-140. DOI: 10.1080/00222349108245788
|
[22] |
CARTIER L, OKIHARA T, LOTZ B. Triangular polymer single crystals: Stereocomplexes, twins, and frustrated structures[J]. Macromolecules, 1997, 30(20): 6313-6322.
|
[23] |
AURAS R, HARTE B, SELKE S. An overview of polylactides as packaging materials[J]. Macromolecular Bioscience, 2004, 4(9): 835-864.
|
[24] |
DE SANTIS P, KOVACS A J. Molecular conformation of poly(S-lactic acid)[J]. Biopolymers, 1968, 6(3): 299-306.
|
[25] |
KOBAYASHI J, ASAHI T, ICHIKI M, et al. Structural and optical properties of poly lactic acids[J]. Journal of Applied Physics, 1995, 77(7): 2957-2973. DOI: 10.1063/1.358712
|
[26] |
PUIGGALI J, IKADA Y, TSUJI H, et al. The frustrated structure of poly(L-lactide)[J]. Polymer, 2000, 41(25): 8921-8930. DOI: 10.1016/S0032-3861(00)00235-4
|
[27] |
SARASUA J R, RODRÍGUEZ N L, ARRAIZA A L, et al. Stereoselective crystallization and specific interactions in polylactides[J]. Macromolecules, 2005, 38(20): 8362-8371. DOI: 10.1021/ma051266z
|
[28] |
MOAZZEN N, KHANMOHAMMADI M, GARMARUDI A B, et al. Optimization and infrared spectrometric evaluation of the mechanical properties of PLA-based biocomposites[J]. Journal of Macromolecular Science Part A—Pure and Applied Chemistry, 2019, 56(1): 17-25. DOI: 10.1080/10601325.2018.1477478
|
[29] |
HIRATA J, KUROKAWA N, OKANO M, et al. Evaluation of crystallinity and hydrogen bond formation in stereocomplex poly(lactic acid) films by terahertz time-domain spectroscopy[J]. Macromolecules, 2020, 53(16): 7171-7177. DOI: 10.1021/acs.macromol.0c00237
|
[30] |
TSUJI H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597.
|
[31] |
HE Y, XU Y, WEI J, et al. Unique crystallization behavior of poly(L-lactide)/poly(D-lactide) stereocomplex depending on initial melt states[J]. Polymer, 2008, 49(26): 5670-5675. DOI: 10.1016/j.polymer.2008.10.028
|
[32] |
BAI H, DENG S, BAI D, et al. Recent advances in processing of stereocomplex-type polylactide[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700454. DOI: 10.1002/marc.201700454
|
[33] |
LIU Z, LING F, DIAO X, et al. Stereocom plex-type polylactide with remarkably enhanced melt-processability and electrical performance via incorporating multifunctional carbon black[J]. Polymer, 2020, 188: 122136. DOI: 10.1016/j.polymer.2019.122136
|
[34] |
NUGRAHA M W, WIRZAL M D H, ALI F, et al. Electrospun polylactic acid/tungsten oxide/amino-functionalized carbon quantum dots (PLA/WO3/N-CQDs) fibers for oil/water separation and photocatalytic decolorization[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106033. DOI: 10.1016/j.jece.2021.106033
|
[35] |
MAHMUD Z, NASRIN A, HASSAN M, et al. 3D-printed polymer nanocomposites with carbon quantum dots for enhanced properties and in situ monitoring of cardiovascular stents[J]. Polymers for Advanced Technologies, 2022, 33(3): 980-990. DOI: 10.1002/pat.5572
|
[36] |
YIN Z, WANG C, PENG Z, et al. Construction of stereocomplex granular dams in luminescent biopolymer systems[J]. CrystEngComm, 2020, 22(44): 7628-7638. DOI: 10.1039/D0CE01156H
|
[37] |
GUO Y, SUN X, XUE B, et al. Carbon quantum dots-driven surface morphology transformation towards superhydrophobic poly(lactic acid) film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130547.
|
[38] |
LIU L, CHAO P, MO D, et al. Chlorinated polymer solar cells simultaneously enhanced by fullerene and non-fullerene ternary strategies[J]. Journal of Energy Chemistry, 2021, 54: 620-625. DOI: 10.1016/j.jechem.2020.06.014
|
[39] |
李文江, 关平丽, 余锐, 等. C60-MoP-C纳米花范德瓦耳斯异质结及其电催化析氢性能[J]. 无机化学学报, 2024, 40(4): 771-781. DOI: 10.11862/CJIC.20230289
LI Wenjiang, GUAN Pingli, YU Rui, et al. C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781(in Chinese). DOI: 10.11862/CJIC.20230289
|
[40] |
XU P Y, LI X Q, CHEN W G, et al. Progress in antiviral fullerene research[J]. Nanomaterials, 2022, 12(15): 2547. DOI: 10.3390/nano12152547
|
[41] |
CHANG W W, NIU J, PENG H, et al. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator[J]. International Journal of Biological Macromolecules, 2023, 253: 127230. DOI: 10.1016/j.ijbiomac.2023.127230
|
[42] |
YANG S, ZHONG G J, XU J Z, et al. Preferential formation of stereocomplex in high-molecular-weight polylactic acid racemic blend induced by carbon nanotubes[J]. Polymer, 2016, 105: 167-171. DOI: 10.1016/j.polymer.2016.10.034
|
[43] |
YANG S, XU J Z, LI Y, et al. Effects of solvents on stereocomplex crystallization of high-molecular-weight polylactic acid racemic blends in the presence of carbon nanotubes[J]. Macromolecular Chemistry and Physics, 2017, 218(21): 1700292. DOI: 10.1002/macp.201700292
|
[44] |
QUAN H, ZHANG S J, QIAO J L, et al. The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes[J]. Polymer, 2012, 53(20): 4547-4552. DOI: 10.1016/j.polymer.2012.07.061
|
[45] |
HE S, BAI H, BAI D, et al. A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering[J]. Polymer, 2019, 162: 50-57. DOI: 10.1016/j.polymer.2018.12.032
|
[46] |
DE ARENAZA I M, SARASUA J R, AMESTOY H, et al. Polylactide stereocomplex crystallization prompted by multiwall carbon nanotubes[J]. Journal of Applied Polymer Science, 2013, 130(6): 4327-4337. DOI: 10.1002/app.39721
|
[47] |
BRZEZIŃSKI M, BOGUSŁAWSKA M, ILČÍKOVÁ M, et al. Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes[J]. Macromolecules, 2012, 45(21): 8714-8721. DOI: 10.1021/ma301554q
|
[48] |
LIU H, BAI D, BAI H, et al. Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(L-lactide)/multi-walled carbon nanotube nanocomposites[J]. Journal of Materials Chemistry A, 2015, 3(26): 13835-13847. DOI: 10.1039/C5TA02017D
|
[49] |
JING Z, SHI X, ZHANG G, et al. Synthesis, stereocomplex crystallization and properties of poly(L-lactide)/four-armed star poly(D-lactide) functionalized carbon nanotubes nanocomposites[J]. Polymers for Advanced Technologies, 2015, 26(3): 223-233. DOI: 10.1002/pat.3442
|
[50] |
FAWCETT W, SHETTY D K. Effects of carbon nanofibers on cell morphology, thermal conductivity and crush strength of carbon foam[J]. Carbon, 2010, 48(1): 68-80.
|
[51] |
GU T, SUN D X, QI X D, et al. Heat resistant and thermally conductive polylactide composites achieved by stereocomplex crystallite tailored carbon nanofiber network[J]. Chemical Engineering Journal, 2021, 418: 129287. DOI: 10.1016/j.cej.2021.129287
|
[52] |
LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. DOI: 10.1126/science.1157996
|
[53] |
BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. DOI: 10.1021/nl0731872
|
[54] |
ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. DOI: 10.1002/adma.201001068
|
[55] |
MITTAL V. Functional polymer nanocomposites with graphene: A review[J]. Macromolecular Materials and Engineering, 2014, 299(8): 906-931.
|
[56] |
GIRDTHEP S, SANKONG W, PONGMALEE A, et al. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets[J]. Polymer Testing, 2017, 61: 229-239. DOI: 10.1016/j.polymertesting.2017.05.009
|
[57] |
WU X, CHEN X, FAN Z. Influence of graphene nanosheets on stereocomplex crystallization behaviors of star-shaped poly (D(L)-lactide) stereoblock copolymer[J]. Polymers for Advanced Technologies, 2018, 29 (1): 632-640.
|
[58] |
GU Z, XU Y, LU Q, et al. Stereocomplex for mation in mixed polymers filled with two-dimensional nanofillers[J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6443-6452. DOI: 10.1039/C8CP07839D
|
[59] |
黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799. DOI: 10.6023/A16070360
HUANG Guojia, CHEN Zhigang, LI Maodong, et al. Surface functional modification of graphene and graphene oxide[J]. Acta Chimica Sinica, 2016, 74(10): 789-799(in Chinese). DOI: 10.6023/A16070360
|
[60] |
ZHONG C N, LIU Y D, TANG J, et al. A facile strategy to enhance the formation of stereocomplex crystallites in poly(L-lactic acid)/poly(D-lactic acid) blend with high molecular weights[J]. Chinese Journal of Polymer Science, 2023, 41(7): 1115-1122. DOI: 10.1007/s10118-023-2901-y
|
[61] |
XU H, WU D, YANG X, et al. Thermostable and impermeable "nano-barrier walls" constructed by poly(lactic acid) stereocomplex crystal decorated graphene oxide nanosheets[J]. Macromolecules, 2015, 48(7): 2127-2137. DOI: 10.1021/ma502603j
|
[62] |
ZHANG D, LIN Y, WU G. Polylactide-based nanocomposites with stereocomplex networks enhanced by GO-g-PDLA[J]. Composites Science and Technology, 2017, 138: 57-67.
|
[63] |
GU T, SUN D X, QI X D, et al. Synchronously enhanced thermal conductivity and heat resistance in poly(L-lactide)/graphene nanoplatelets composites via constructing stereocomplex crystallites at interface[J]. Composites Part B: Engineering, 2021, 224: 109163. DOI: 10.1016/j.compositesb.2021.109163
|
[64] |
XU J Z, CHEN T, YANG C L, et al. Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study[J]. Macromolecules, 2010, 43(11): 5000-5008. DOI: 10.1021/ma100304n
|
[65] |
SHANG H, KE L, XU W, et al. Microwave-assisted direct growth of carbon nanotubes at graphene oxide nanosheets to promote the stereocomplexation and performances of polylactides[J]. Industrial & Engineering Chemistry Research, 2022, 61(2): 1111-1121.
|