Citation: | FENG Jiqi, YE Bo, ZOU Yangkun, et al. CFRP damage imaging based on MVDR weighted sparse reconstruction[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5673-5686. DOI: 10.13801/j.cnki.fhclxb.20240507.002 |
[1] |
杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001
DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001
|
[2] |
KUPSKI J, FREITAS S T D. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures[J]. Composite Structures, 2021, 268: 113923.
|
[3] |
陈健, 袁慎芳. 加筋复合材料结构分层损伤的贝叶斯诊断及预测[J]. 复合材料学报, 2021, 38(11): 3726-3736.
CHEN Jian, YUAN Shenfang. Bayesian diagnosis and prediction of delamination damage of stiffened composite structures[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3726-3736(in Chinese).
|
[4] |
王奕首, 王明华, 刘德博, 等. 声发射在复合材料贮箱上的应用研究进展[J]. 仪器仪表学报, 2022, 43(4): 1-17.
WANG Yishou, WANG Minghua, LIU Debo, et al. Research progress on the application of acoustic emission in composite tanks[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 1-17(in Chinese).
|
[5] |
雷鹰, 刘丽君, 郑翥鹏. 结构健康监测若干方法与技术研究进展综述[J]. 厦门大学学报(自然科学版), 2021, 60(3): 630-640.
LEI Ying, LIU Lijun, ZHENG Zhupeng. A review of research progress on several methods and techniques of structural health monitoring[J]. Journal of Xiamen University (Natural Science Edition), 2021, 60(3): 630-640(in Chinese).
|
[6] |
王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1): 1-16.
WANG Yishou, QING Xinlin. Research progress on health monitoring technology of composite connected structures[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 1-16(in Chinese).
|
[7] |
李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166.
LI Pengfei, LUO Ying, XU Chenguang. Lamb wave field reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166(in Chinese).
|
[8] |
杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317.
YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Research progress of ultrasonic detection and imaging methods for damage of carbon fiber composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317(in Chinese).
|
[9] |
WANG C H, ROSE J T, CHANG F K. A synthetic time-reversal imaging method for structural health monitoring[J]. Smart Materials and Structures, 2004, 13(2): 415. DOI: 10.1088/0964-1726/13/2/020
|
[10] |
YU Y, LIU X, WANG Y, et al. Lamb wave-based damage imaging of CFRP composite structures using autoencoder and delay-and-sum[J]. Composite Structures, 2023, 303: 116263. DOI: 10.1016/j.compstruct.2022.116263
|
[11] |
LI F, LUO Y. Damage imaging of lamb wave in isotropic plate using phased array delay and sum based on frequency-domain inverse scattering model[J]. Nondestructive Testing and Evaluation, 2022, 37(6): 721-736. DOI: 10.1080/10589759.2022.2045292
|
[12] |
HALL J S, MICHAELS J E. Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2311-2323. DOI: 10.1109/TUFFC.2010.1692
|
[13] |
HUA J, ZHANG H, MIAO Y, et al. Modified minimum variance imaging of Lamb waves for damage localization in aluminum plates and composite laminates[J]. NDT & E International, 2022, 125: 102574.
|
[14] |
SU C, JIANG M, LYU S, et al. Damage imaging for composite using Lamb wave based on minimum variance distortion-less response method[J]. Transactions of the Institute of Measurement and Control, 2019, 41(15): 4179-4186. DOI: 10.1177/0142331219851901
|
[15] |
LEVINE R M, MICHAELS J E. Model-based imaging of damage with Lamb waves via sparse reconstruction[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1525-1534. DOI: 10.1121/1.4788984
|
[16] |
LEVINE R M, MICHAELS J E. Block-sparse reconstruction and imaging for lamb wave structural health monitoring[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(6): 1006-1015. DOI: 10.1109/TUFFC.2014.2996
|
[17] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582
|
[18] |
WANG Z, WANG S, WANG Q, et al. Bayesian compressive sensing for recovering the time-frequency representation of undersampled Lamb wave signals[J]. Applied Acoustics, 2022, 187: 108480. DOI: 10.1016/j.apacoust.2021.108480
|
[19] |
GOLATO A, AHMAD F, SANTHANAM S, et al. Multipath exploitation for enhanced defect imaging using Lamb waves[J]. NDT & E International, 2017, 92: 1-9.
|
[20] |
GOLATO A, SANTHANAM S, AHMAD F, et al. Multimodal sparse reconstruction in guided wave imaging of defects in plates[J]. Journal of Electronic Imaging, 2016, 25(4): 043013. DOI: 10.1117/1.JEI.25.4.043013
|
[21] |
ZHANG H, LU Y, MA S, et al. Adaptive sparse reconstruction of damage localization via Lamb waves for structure health monitoring[J]. Computing, 2019, 101: 679-692. DOI: 10.1007/s00607-018-00694-0
|
[22] |
XU C, DENG M. Lamb wave imaging based on multi-frequency sparse decomposition[J]. Mechanical Systems and Signal Processing, 2022, 174: 109076. DOI: 10.1016/j.ymssp.2022.109076
|
[23] |
HUA J, WANG Z, GAO F, et al. Sparse reconstruction imaging of damage for Lamb wave simultaneous excitation system in composite laminates[J]. Measurement, 2019, 136: 201-211. DOI: 10.1016/j.measurement.2018.12.081
|
[24] |
HUA J, GAO F, ZENG L, et al. Modified sparse reconstruction imaging of lamb waves for damage quantitative evaluation[J]. NDT & E International, 2019, 107: 102143.
|
[25] |
XU C, YANG Z, TIAN S, et al. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum[J]. Composite Structures, 2019, 223: 110973. DOI: 10.1016/j.compstruct.2019.110973
|
[26] |
WU H, MA S, DU B. Damage imaging method for composites laminates based on sparse reconstruction of single-mode Lamb wave[J]. Measurement Science and Technology, 2022, 33(12): 125403. DOI: 10.1088/1361-6501/ac9075
|
[27] |
XU C, YANG Z, ZHAI Z, et al. A weighted sparse reconstruction-based ultrasonic guided wave anomaly imaging method for composite laminates[J]. Composite Structures, 2019, 209: 233-241. DOI: 10.1016/j.compstruct.2018.10.097
|
[28] |
XU C, YANG Z, ZUO H, et al. Minimum variance Lamb wave imaging based on weighted sparse decomposition coefficients in quasi-isotropic composite laminates[J]. Composite Structures, 2021, 275: 114432. DOI: 10.1016/j.compstruct.2021.114432
|
[29] |
徐冠基, 许才彬, 杨志勃, 等. 碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J]. 西安交通大学学报, 2019, 53(6): 176-182. DOI: 10.7652/xjtuxb201906023
XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted block sparse imaging method for Lamb wave damage detection of carbon fiber laminates[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 176-182(in Chinese). DOI: 10.7652/xjtuxb201906023
|
[30] |
DE LUCA A, CAPUTO F, KHODAEI Z S, et al. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves[J]. Composites Part B: Engineering, 2018, 138: 168-180. DOI: 10.1016/j.compositesb.2017.11.042
|
[31] |
LI Y, VOROBYOV S A, HE Z. Terrain-scattered jammer suppression in MIMO radar using space-(fast) time adaptive processing[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai: IEEE, 2016: 3026-3033.
|
[32] |
STERNINI S, PAU A, SCALEA F L D. Minimum variance imaging in plates using guided wave mode beamforming[J]. IEEE Trans Ultrason Ferroelectrics Freq Control, 2019, 66(12): 1906-1919. DOI: 10.1109/TUFFC.2019.2935139
|
[33] |
HARLEY J B, MOURA J M F. Data-driven matched field processing for Lamb wave structural health monitoring[J]. The Journal of the Acoustical Society of America, 2014, 135(3): 1231-1244. DOI: 10.1121/1.4863651
|
[34] |
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. DOI: 10.1109/JSTSP.2007.910281
|
[35] |
MOLL J, KATHOL J, FRITZEN C, et al. Open guided waves: Online platform for ultrasonic guided wave measurements[J]. Structural Health Monitoring, 2019, 18(5-6): 1903-1914.
|
[36] |
XU B, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26: 123-134.
|
[37] |
NOKHBATOLFOGHAHAI A, NAVAZI H M, GROVES R M. Use of dictionary learning for damage localization in complex structures[J]. Mechanical Systems and Signal Processing, 2022, 180: 109394. DOI: 10.1016/j.ymssp.2022.109394
|