FENG Jiqi, YE Bo, ZOU Yangkun, et al. CFRP damage imaging based on MVDR weighted sparse reconstruction[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5673-5686. DOI: 10.13801/j.cnki.fhclxb.20240507.002
Citation: FENG Jiqi, YE Bo, ZOU Yangkun, et al. CFRP damage imaging based on MVDR weighted sparse reconstruction[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5673-5686. DOI: 10.13801/j.cnki.fhclxb.20240507.002

CFRP damage imaging based on MVDR weighted sparse reconstruction

Funds: National Natural Science Foundation of China (62063012); The Young and Middle-Aged Academic and Technical Leaders Reserve Talents Project of Yunnan Province (202305AC160062)
More Information
  • Received Date: December 03, 2023
  • Revised Date: April 13, 2024
  • Accepted Date: April 25, 2024
  • Available Online: May 07, 2024
  • Carbon fiber reinforced polymer (CFRP) is widely used in aerospace and other fields due to its excellent performance, and it will be damaged in service. Sparse reconstruction (SR) algorithm can be used to image the CFRP damage and locate the damage, but the atomic mismatch problem will cause artifacts and even misjudge the damage. Aiming at the above problems, it was proposed that a sparse reconstruction imaging method weighted by minimum variance distortionless response (MVDR). The CFRP monitoring area was divided into several grids, the dictionary was constructed based on the scattering model of Lamb wave to form the SR model with the scattering signal and the sparse solution variables. Secondly, the MVDR imaging method was used for imaging. Based on the imaging results, the MVDR weighting factor was constructed to weight the sparse solution variables. Finally, the basis pursuit denoising algorithm was adopted to solve the weighted SR model, the optimal sparse solution was obtained and converted into pixel value to realize the damage imaging of CFRP. The experimental results of CFRP damage imaging show that the imaging effect of the proposed method is better than that of the SR imaging method under the same regularization parameters, the localization errors are reduced by 72.9 mm, 77.4 mm and 14.7 mm respectively compared with the SR imaging method under three different regularization parameters. Under four different damage locations, the imaging results of MVDR-SR imaging method have fewer artifacts and the maximum damage localization error is 7.9 mm. Compared with MVDR and SR imaging methods, MVDR-SR imaging method has better imaging performance, which verifies the correctness and effectiveness of the proposed method.
  • [1]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001
    [2]
    KUPSKI J, FREITAS S T D. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures[J]. Composite Structures, 2021, 268: 113923.
    [3]
    陈健, 袁慎芳. 加筋复合材料结构分层损伤的贝叶斯诊断及预测[J]. 复合材料学报, 2021, 38(11): 3726-3736.

    CHEN Jian, YUAN Shenfang. Bayesian diagnosis and prediction of delamination damage of stiffened composite structures[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3726-3736(in Chinese).
    [4]
    王奕首, 王明华, 刘德博, 等. 声发射在复合材料贮箱上的应用研究进展[J]. 仪器仪表学报, 2022, 43(4): 1-17.

    WANG Yishou, WANG Minghua, LIU Debo, et al. Research progress on the application of acoustic emission in composite tanks[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 1-17(in Chinese).
    [5]
    雷鹰, 刘丽君, 郑翥鹏. 结构健康监测若干方法与技术研究进展综述[J]. 厦门大学学报(自然科学版), 2021, 60(3): 630-640.

    LEI Ying, LIU Lijun, ZHENG Zhupeng. A review of research progress on several methods and techniques of structural health monitoring[J]. Journal of Xiamen University (Natural Science Edition), 2021, 60(3): 630-640(in Chinese).
    [6]
    王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1): 1-16.

    WANG Yishou, QING Xinlin. Research progress on health monitoring technology of composite connected structures[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 1-16(in Chinese).
    [7]
    李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166.

    LI Pengfei, LUO Ying, XU Chenguang. Lamb wave field reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166(in Chinese).
    [8]
    杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317.

    YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Research progress of ultrasonic detection and imaging methods for damage of carbon fiber composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317(in Chinese).
    [9]
    WANG C H, ROSE J T, CHANG F K. A synthetic time-reversal imaging method for structural health monitoring[J]. Smart Materials and Structures, 2004, 13(2): 415. DOI: 10.1088/0964-1726/13/2/020
    [10]
    YU Y, LIU X, WANG Y, et al. Lamb wave-based damage imaging of CFRP composite structures using autoencoder and delay-and-sum[J]. Composite Structures, 2023, 303: 116263. DOI: 10.1016/j.compstruct.2022.116263
    [11]
    LI F, LUO Y. Damage imaging of lamb wave in isotropic plate using phased array delay and sum based on frequency-domain inverse scattering model[J]. Nondestructive Testing and Evaluation, 2022, 37(6): 721-736. DOI: 10.1080/10589759.2022.2045292
    [12]
    HALL J S, MICHAELS J E. Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2311-2323. DOI: 10.1109/TUFFC.2010.1692
    [13]
    HUA J, ZHANG H, MIAO Y, et al. Modified minimum variance imaging of Lamb waves for damage localization in aluminum plates and composite laminates[J]. NDT & E International, 2022, 125: 102574.
    [14]
    SU C, JIANG M, LYU S, et al. Damage imaging for composite using Lamb wave based on minimum variance distortion-less response method[J]. Transactions of the Institute of Measurement and Control, 2019, 41(15): 4179-4186. DOI: 10.1177/0142331219851901
    [15]
    LEVINE R M, MICHAELS J E. Model-based imaging of damage with Lamb waves via sparse reconstruction[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1525-1534. DOI: 10.1121/1.4788984
    [16]
    LEVINE R M, MICHAELS J E. Block-sparse reconstruction and imaging for lamb wave structural health monitoring[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(6): 1006-1015. DOI: 10.1109/TUFFC.2014.2996
    [17]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582
    [18]
    WANG Z, WANG S, WANG Q, et al. Bayesian compressive sensing for recovering the time-frequency representation of undersampled Lamb wave signals[J]. Applied Acoustics, 2022, 187: 108480. DOI: 10.1016/j.apacoust.2021.108480
    [19]
    GOLATO A, AHMAD F, SANTHANAM S, et al. Multipath exploitation for enhanced defect imaging using Lamb waves[J]. NDT & E International, 2017, 92: 1-9.
    [20]
    GOLATO A, SANTHANAM S, AHMAD F, et al. Multimodal sparse reconstruction in guided wave imaging of defects in plates[J]. Journal of Electronic Imaging, 2016, 25(4): 043013. DOI: 10.1117/1.JEI.25.4.043013
    [21]
    ZHANG H, LU Y, MA S, et al. Adaptive sparse reconstruction of damage localization via Lamb waves for structure health monitoring[J]. Computing, 2019, 101: 679-692. DOI: 10.1007/s00607-018-00694-0
    [22]
    XU C, DENG M. Lamb wave imaging based on multi-frequency sparse decomposition[J]. Mechanical Systems and Signal Processing, 2022, 174: 109076. DOI: 10.1016/j.ymssp.2022.109076
    [23]
    HUA J, WANG Z, GAO F, et al. Sparse reconstruction imaging of damage for Lamb wave simultaneous excitation system in composite laminates[J]. Measurement, 2019, 136: 201-211. DOI: 10.1016/j.measurement.2018.12.081
    [24]
    HUA J, GAO F, ZENG L, et al. Modified sparse reconstruction imaging of lamb waves for damage quantitative evaluation[J]. NDT & E International, 2019, 107: 102143.
    [25]
    XU C, YANG Z, TIAN S, et al. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum[J]. Composite Structures, 2019, 223: 110973. DOI: 10.1016/j.compstruct.2019.110973
    [26]
    WU H, MA S, DU B. Damage imaging method for composites laminates based on sparse reconstruction of single-mode Lamb wave[J]. Measurement Science and Technology, 2022, 33(12): 125403. DOI: 10.1088/1361-6501/ac9075
    [27]
    XU C, YANG Z, ZHAI Z, et al. A weighted sparse reconstruction-based ultrasonic guided wave anomaly imaging method for composite laminates[J]. Composite Structures, 2019, 209: 233-241. DOI: 10.1016/j.compstruct.2018.10.097
    [28]
    XU C, YANG Z, ZUO H, et al. Minimum variance Lamb wave imaging based on weighted sparse decomposition coefficients in quasi-isotropic composite laminates[J]. Composite Structures, 2021, 275: 114432. DOI: 10.1016/j.compstruct.2021.114432
    [29]
    徐冠基, 许才彬, 杨志勃, 等. 碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J]. 西安交通大学学报, 2019, 53(6): 176-182. DOI: 10.7652/xjtuxb201906023

    XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted block sparse imaging method for Lamb wave damage detection of carbon fiber laminates[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 176-182(in Chinese). DOI: 10.7652/xjtuxb201906023
    [30]
    DE LUCA A, CAPUTO F, KHODAEI Z S, et al. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves[J]. Composites Part B: Engineering, 2018, 138: 168-180. DOI: 10.1016/j.compositesb.2017.11.042
    [31]
    LI Y, VOROBYOV S A, HE Z. Terrain-scattered jammer suppression in MIMO radar using space-(fast) time adaptive processing[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai: IEEE, 2016: 3026-3033.
    [32]
    STERNINI S, PAU A, SCALEA F L D. Minimum variance imaging in plates using guided wave mode beamforming[J]. IEEE Trans Ultrason Ferroelectrics Freq Control, 2019, 66(12): 1906-1919. DOI: 10.1109/TUFFC.2019.2935139
    [33]
    HARLEY J B, MOURA J M F. Data-driven matched field processing for Lamb wave structural health monitoring[J]. The Journal of the Acoustical Society of America, 2014, 135(3): 1231-1244. DOI: 10.1121/1.4863651
    [34]
    FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. DOI: 10.1109/JSTSP.2007.910281
    [35]
    MOLL J, KATHOL J, FRITZEN C, et al. Open guided waves: Online platform for ultrasonic guided wave measurements[J]. Structural Health Monitoring, 2019, 18(5-6): 1903-1914.
    [36]
    XU B, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26: 123-134.
    [37]
    NOKHBATOLFOGHAHAI A, NAVAZI H M, GROVES R M. Use of dictionary learning for damage localization in complex structures[J]. Mechanical Systems and Signal Processing, 2022, 180: 109394. DOI: 10.1016/j.ymssp.2022.109394
  • Related Articles

    [1]XIAO Jiachen, LU Chao, LIN Junming, CHEN Guo. Air coupled ultrasonic probabilistic damage imaging of composite laminates based on wavelet packet energy relative variation deviation[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2635-2645. DOI: 10.13801/j.cnki.fhclxb.20201109.001
    [2]LI Pengfei, LUO Ying, XU Chenguang. Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166. DOI: 10.13801/j.cnki.fhclxb.20200722.004
    [3]SU Chenhui, JIANG Mingshun, LIANG Jianying, TIAN Aiqin, SUN Lin, ZHANG Faye, ZHANG Lei, SUI Qingmei. Lamb wave tomography damage imaging of carbon fiber reinforced polymer composite structures in strong noise environment[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 886-895. DOI: 10.13801/j.cnki.fhclxb.20190628.004
    [4]XU Ying, CHEN Rui, LU Miaomiao, ZU Hongguang. Detection and location of damage in fiber reinforced plastics plates by Lamb wave considering material anisotropy[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 389-399. DOI: 10.13801/j.cnki.fhclxb.20180502.007
    [5]LIU Zenghua, FAN Junwei, HE Cunfu, WU Bin. Scanning imaging of composite plate using air-coupled Lamb waves based on probabilistic damage algorithm[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 227-235. DOI: 10.13801/j.cnki.fhclxb.201501.004
    [6]LIU Bin, QIU Lei, YUAN Shenfang, WANG Changchun. Damage imaging and localization method based on multi-dimension arrays and spatial filter without wave velocity[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 835-844.
    [7]LIU Guoqiang, SUN Xiasheng, XIAO Yingchun, LI Ming, BAI Shengbao. Damage monitoring of composite T-joint using Lamb wave and Hilbert transform[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 818-823.
    [8]SUN Yajie, ZHANG Yonghong, YUAN Shenfang, QIAN Chengshan, ZHANG Zijia. Baseline-free Lamb wave phased array imaging method for structural damage monitoring[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 264-269.
    [9]CAI Jian, SHI Lihua, YUAN Shenfang. High-resolution damage imaging for composite plate structures based on virtual time reversal[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 183-189.
    [10]LIU Feng, WANG Xinwei. Modeling and simulation of Lamb wave propagation in composite panels based on the spectral finite element[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 174-180.

Catalog

    Article Metrics

    Article views (147) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return